When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Finite volume method - Wikipedia

    en.wikipedia.org/wiki/Finite_volume_method

    The finite volume method (FVM) is a method for representing and evaluating partial differential equations in the form of algebraic equations. [1] In the finite volume method, volume integrals in a partial differential equation that contain a divergence term are converted to surface integrals, using the divergence theorem. These terms are then ...

  3. Disc integration - Wikipedia

    en.wikipedia.org/wiki/Disc_integration

    Disc integration, also known in integral calculus as the disc method, is a method for calculating the volume of a solid of revolution of a solid-state material when integrating along an axis "parallel" to the axis of revolution. This method models the resulting three-dimensional shape as a stack of an infinite number of discs of varying radius ...

  4. Xcas - Wikipedia

    en.wikipedia.org/wiki/Xcas

    calculate definite integral (also called solid of revolution) - finding volume by rotation (around the x-axis): int(pi*function^2,x,lowerlimit,upperlimit) calculate definite integral (also called solid of revolution) - finding volume by rotation (around the y-axis) for a decreasing function: int(2*pi*x*function,x,lowerlimit,upperlimit)

  5. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.

  6. Shell integration - Wikipedia

    en.wikipedia.org/wiki/Shell_integration

    Much more work is needed to find the volume if we use disc integration. First, we would need to solve y = 8 ( x − 1 ) 2 ( x − 2 ) 2 {\displaystyle y=8(x-1)^{2}(x-2)^{2}} for x . Next, because the volume is hollow in the middle, we would need two functions: one that defined an outer solid and one that defined the inner hollow.

  7. Integration using parametric derivatives - Wikipedia

    en.wikipedia.org/wiki/Integration_using...

    In calculus, integration by parametric derivatives, also called parametric integration, [1] is a method which uses known Integrals to integrate derived functions. It is often used in Physics, and is similar to integration by substitution.

  8. Volume integral - Wikipedia

    en.wikipedia.org/wiki/Volume_integral

    In mathematics (particularly multivariable calculus), a volume integral (∭) is an integral over a 3-dimensional domain; that is, it is a special case of multiple integrals. Volume integrals are especially important in physics for many applications, for example, to calculate flux densities, or to calculate mass from a corresponding density ...

  9. Volume element - Wikipedia

    en.wikipedia.org/wiki/Volume_element

    Consider the linear subspace of the n-dimensional Euclidean space R n that is spanned by a collection of linearly independent vectors , …,. To find the volume element of the subspace, it is useful to know the fact from linear algebra that the volume of the parallelepiped spanned by the is the square root of the determinant of the Gramian matrix of the : (), = ….