Search results
Results From The WOW.Com Content Network
In solid-state physics, the free electron model is a quantum mechanical model for the behaviour of charge carriers in a metallic solid. It was developed in 1927, [1] principally by Arnold Sommerfeld, who combined the classical Drude model with quantum mechanical Fermi–Dirac statistics and hence it is also known as the Drude–Sommerfeld model.
The Monte Carlo method for electron transport is a semiclassical Monte Carlo (MC) approach of modeling semiconductor transport. Assuming the carrier motion consists of free flights interrupted by scattering mechanisms, a computer is utilized to simulate the trajectories of particles as they move across the device under the influence of an electric field using classical mechanics.
The free-electron picture has, nevertheless, remained a dominant one in introductory courses on metallurgy. The electronic band structure model became a major focus for the study of metals and even more of semiconductors. Together with the electronic states, the vibrational states were also shown to form bands.
The model also explains partly the Wiedemann–Franz law of 1853. Drude formula is derived in a limited way, namely by assuming that the charge carriers form a classical ideal gas. When quantum theory is considered, the Drude model can be extended to the free electron model, where the carriers follow Fermi–Dirac distribution. The conductivity ...
[1]: 161 The first one is the nearly free electron model, in which the electrons are assumed to move almost freely within the material. In this model, the electronic states resemble free electron plane waves, and are only slightly perturbed by the crystal lattice. This model explains the origin of the electronic dispersion relation, but the ...
The sea of conduction electrons in an electrical conductor, called a Fermi sea, contains electrons with energies up to the chemical potential of the system. An unfilled state in the Fermi sea behaves like a positively charged electron, and although it too is referred to as an "electron hole", it is distinct from a positron.
Statistical energy analysis (SEA) is a method for predicting the transmission of sound and vibration through complex structural acoustic systems. The method is particularly well suited for quick system level response predictions at the early design stage of a product, and for predicting responses at higher frequencies.
Valence electron, as an outer shell electron that is associated with an atom; Valence and conduction bands, as a conduction band electron relative to the electronic band structure of a solid; Fermi gas, as a particle of a non-interacting electron gas; Free electron model, as a particle in the Drude-Sommerfeld model of metals; Free-electron ...