Search results
Results From The WOW.Com Content Network
In chemistry, a radical, also known as a free radical, is an atom, molecule, or ion that has at least one unpaired valence electron. [1] [2] With some exceptions, these unpaired electrons make radicals highly chemically reactive. Many radicals spontaneously dimerize. Most organic radicals have short lifetimes.
In chemistry, an unpaired electron is an electron that occupies an orbital of an atom singly, rather than as part of an electron pair. Each atomic orbital of an atom (specified by the three quantum numbers n, l and m) has a capacity to contain two electrons ( electron pair ) with opposite spins .
Ions consisting of only a single atom are termed atomic or monatomic ions, while two or more atoms form molecular ions or polyatomic ions. In the case of physical ionization in a fluid (gas or liquid), "ion pairs" are created by spontaneous molecule collisions, where each generated pair consists of a free electron and a positive ion. [5]
Leptonic atoms, named using -onium, are exotic atoms constituted by the bound state of a lepton and an antilepton. Examples of such atoms include positronium (e − e +), muonium (e − μ +), and "true muonium" (μ − μ +). Of these positronium and muonium have been experimentally observed, while "true muonium" remains only theoretical.
The electron (e −, or β − in nuclear reactions) is a subatomic particle with a negative one elementary electric charge. [13] Electrons belong to the first generation of the lepton particle family, [14] and are generally thought to be elementary particles because they have no known components or substructure. [1]
An ion is an atom (or group of atoms) that has lost one or more electrons, giving it a net positive charge (cation), or that has gained one or more electrons, giving it a net negative charge (anion). Monatomic ions are formed from single atoms, while polyatomic ions are formed from two or more atoms that have been bonded together, in each case ...
Atoms that lose electrons make positively charged ions (called cations). This transfer of electrons is known as electrovalence in contrast to covalence . In the simplest case, the cation is a metal atom and the anion is a nonmetal atom, but these ions can be more complex, e.g. polyatomic ions like NH +
In graphite, each carbon atom uses only 3 of its 4 outer energy level electrons in covalently bonding to three other carbon atoms in a plane. Each carbon atom contributes one electron to a delocalized system of electrons that is also a part of the chemical bonding. The delocalized electrons are free to move throughout the plane.