Search results
Results From The WOW.Com Content Network
The t-test p-value for the difference in means, and the regression p-value for the slope, are both 0.00805. The methods give identical results. This example shows that, for the special case of a simple linear regression where there is a single x-variable that has values 0 and 1, the t-test gives the same results as the linear regression. The ...
For the statistic t, with ν degrees of freedom, A(t | ν) is the probability that t would be less than the observed value if the two means were the same (provided that the smaller mean is subtracted from the larger, so that t ≥ 0). It can be easily calculated from the cumulative distribution function F ν (t) of the t distribution:
R. A. Fisher used n to symbolize degrees of freedom but modern usage typically reserves n for sample size. When reporting the results of statistical tests, the degrees of freedom are typically noted beside the test statistic as either subscript or in parentheses. [6]
However, the central t-distribution can be used as an approximation to the noncentral t-distribution. [7] If T is noncentral t-distributed with ν degrees of freedom and noncentrality parameter μ and F = T 2, then F has a noncentral F-distribution with 1 numerator degree of freedom, ν denominator degrees of freedom, and noncentrality ...
The simplest application of this equation is in performing Welch's t-test. An improved equation was derived to reduce underestimating the effective degrees of freedom if the pooled sample variances have small degrees of freedom. Examples are jackknife and imputation-based variance estimates. [3]
In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the (null) hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch , and is an adaptation of Student's t -test , [ 1 ] and is more reliable when the two samples have unequal variances and ...
One common method of construction of a multivariate t-distribution, for the case of dimensions, is based on the observation that if and are independent and distributed as (,) and (i.e. multivariate normal and chi-squared distributions) respectively, the matrix is a p × p matrix, and is a constant vector then the random variable = / / + has the density [1]
The degrees of freedom are not based on the number of observations as with a Student's t or F-distribution. For example, if testing for a fair, six-sided die, there would be five degrees of freedom because there are six categories or parameters (each number); the number of times the die is rolled does not influence the number of degrees of freedom.