Search results
Results From The WOW.Com Content Network
All centered square numbers and their divisors have a remainder of 1 when divided by 4. Hence all centered square numbers and their divisors end with digit 1 or 5 in base 6, 8, and 12. Every centered square number except 1 is the hypotenuse of a Pythagorean triple (3-4-5, 5-12-13, 7-24-25, ...). This is exactly the sequence of Pythagorean ...
The difference of the n-th and the (n+1)-th consecutive centered k-gonal numbers is k(2n+1). The n-th centered k-gonal number is equal to the n-th regular k-gonal number plus (n-1) 2. Just as is the case with regular polygonal numbers, the first centered k-gonal number is 1. Thus, for any k, 1 is both k-gonal and centered k-gonal.
Denotes square root and is read as the square root of. Rarely used in modern mathematics without a horizontal bar delimiting the width of its argument (see the next item). For example, √2. √ (radical symbol) 1. Denotes square root and is read as the square root of. For example, +. 2.
A non-negative integer is a square number when its square root is again an integer. For example, =, so 9 is a square number. A positive integer that has no square divisors except 1 is called square-free. For a non-negative integer n, the n th square number is n 2, with 0 2 = 0 being the zeroth one. The concept of square can be extended to some ...
Centered hexagonal numbers appearing in the Catan board game: 19 land tiles, 37 total tiles. In mathematics and combinatorics, a centered hexagonal number, or centered hexagon number, [1] [2] is a centered figurate number that represents a hexagon with a dot in the center and all other dots surrounding the center dot in a hexagonal lattice.
The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.
Each centered triangular number from 10 onwards is the sum of three consecutive regular triangular numbers. For n > 2, the sum of the first n centered triangular numbers is the magic constant for an n by n normal magic square.
In mathematics, a centered pentagonal number is a centered figurate number that represents a pentagon with a dot in the center and all other dots surrounding the center in successive pentagonal layers. The centered pentagonal number for n is given by the formula = +,