When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    In linear algebra, a column vector with ⁠ ⁠ elements is an matrix [1] consisting of a single column of ⁠ ⁠ entries, for example, = [].. Similarly, a row vector is a matrix for some ⁠ ⁠, consisting of a single row of ⁠ ⁠ entries, = […]. (Throughout this article, boldface is used for both row and column vectors.)

  3. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    These coordinate vectors form another vector space, which is isomorphic to the original vector space. A coordinate vector is commonly organized as a column matrix (also called a column vector), which is a matrix with only one column. So, a column vector represents both a coordinate vector, and a vector of the original vector space.

  4. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    The outer product is equivalent to a matrix multiplication, provided that is represented as a column vector and as a column vector (which makes a row vector). [ 2 ] [ 3 ] For instance, if m = 4 {\displaystyle m=4} and n = 3 , {\displaystyle n=3,} then [ 4 ]

  5. Non-negative matrix factorization - Wikipedia

    en.wikipedia.org/wiki/Non-negative_matrix...

    Matrix multiplication can be implemented as computing the column vectors of V as linear combinations of the column vectors in W using coefficients supplied by columns of H. That is, each column of V can be computed as follows: =,

  6. Matrix representation - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation

    With column-major order, a "matrix × vector" multiply can be implemented with vectorized multiply-add operations, if the vector's components are broadcast to each SIMD lane. It is also easy to access the basis vectors represented by a transformation matrix as individual column vectors, as these are contiguous in memory.

  7. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    These matrices produce the desired effect only if they are used to premultiply column vectors, and (since in general matrix multiplication is not commutative) only if they are applied in the specified order (see Ambiguities for more details). The order of rotation operations is from right to left; the matrix adjacent to the column vector is the ...

  8. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    When vectors are represented by column vectors, the dot product can be expressed as a matrix product involving a conjugate transpose, denoted with the superscript H: =. In the case of vectors with real components, this definition is the same as in the real case.

  9. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    Multiplication of X by e i extracts the i-th column, while multiplication by B i puts it into the desired position in the final vector. Alternatively, the linear sum can be expressed using the Kronecker product : vec ⁡ ( X ) = ∑ i = 1 n e i ⊗ X e i {\displaystyle \operatorname {vec} (\mathbf {X} )=\sum _{i=1}^{n}\mathbf {e} _{i}\otimes ...