When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Areal velocity - Wikipedia

    en.wikipedia.org/wiki/Areal_velocity

    In classical mechanics, areal velocity (also called sector velocity or sectorial velocity) is a pseudovector whose length equals the rate of change at which area is swept out by a particle as it moves along a curve. It has SI units of square meters per second (m 2 /s) and dimension of square length per time L 2 T −1.

  3. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    Newton illustrates his formula with three examples. In the first two, the central force is a power law, F(r) = r n−3, so C(r) is proportional to r n. The formula above indicates that the angular motion is multiplied by a factor k = 1/ √ n, so that the apsidal angle α equals 180°/ √ n.

  4. Classical central-force problem - Wikipedia

    en.wikipedia.org/wiki/Classical_central-force...

    Since the speed v is likewise unchanging, the areal velocity 1 ⁄ 2 vr ⊥ is a constant of motion; the particle sweeps out equal areas in equal times. The area A of a circular sector equals 1 ⁄ 2 r 2 φ = 1 ⁄ 2 r 2 ωt = 1 ⁄ 2 r v φ t. Hence, the areal velocity dA/dt equals 1 ⁄ 2 r v φ = 1 ⁄ 2 h.

  5. Del in cylindrical and spherical coordinates - Wikipedia

    en.wikipedia.org/wiki/Del_in_cylindrical_and...

    This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.

  6. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Unprimed quantities refer to position, velocity and acceleration in one frame F; primed quantities refer to position, velocity and acceleration in another frame F' moving at translational velocity V or angular velocity Ω relative to F. Conversely F moves at velocity (—V or —Ω) relative to F'. The situation is similar for relative ...

  7. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    The curl of a vector field F, denoted by curl F, or , or rot F, is an operator that maps C k functions in R 3 to C k−1 functions in R 3, and in particular, it maps continuously differentiable functions R 3 → R 3 to continuous functions R 3 → R 3. It can be defined in several ways, to be mentioned below:

  8. Darboux vector - Wikipedia

    en.wikipedia.org/wiki/Darboux_vector

    As it does so, the object's motion will be described by two vectors: a translation vector, and a rotation vector ω, which is an areal velocity vector: the Darboux vector. Note that this rotation is kinematic , rather than physical, because usually when a rigid object moves freely in space its rotation is independent of its translation.

  9. Reynolds transport theorem - Wikipedia

    en.wikipedia.org/wiki/Reynolds_transport_theorem

    Reynolds transport theorem can be expressed as follows: [1] [2] [3] = + () in which n(x,t) is the outward-pointing unit normal vector, x is a point in the region and is the variable of integration, dV and dA are volume and surface elements at x, and v b (x,t) is the velocity of the area element (not the flow velocity).