Search results
Results From The WOW.Com Content Network
The monochromatic AB magnitude is defined as the logarithm of a spectral flux density with the usual scaling of astronomical magnitudes and a zero-point of about 3 631 janskys (symbol Jy), [1] where 1 Jy = 10 −26 W Hz −1 m −2 = 10 −23 erg s −1 Hz −1 cm −2 ("about" because the true definition of the zero point is based on magnitudes as shown below).
The zero point is used to calibrate a system to the standard magnitude system, as the flux detected from stars will vary from detector to detector. [2] Traditionally, Vega is used as the calibration star for the zero point magnitude in specific pass bands (U, B, and V), although often, an average of multiple stars is used for higher accuracy. [3]
The vector approach defines flux density as a vector at a point of space and time prescribed by the investigator. To distinguish this approach, one might speak of the 'full spherical flux density'. In this case, nature tells the investigator what is the magnitude, direction, and sense of the flux density at the prescribed point.
To calculate the flux density in janskys, the total power detected (in watts) is divided by the receiver collecting area (in square meters), and then divided by the detector bandwidth (in hertz). The flux density of astronomical sources is many orders of magnitude below 1 W·m −2 ·Hz −1 , so the result is multiplied by 10 26 to get a more ...
Therefore, the magnitude m, in the spectral band x, would be given by = (,), which is more commonly expressed in terms of common (base-10) logarithms as = (,), where F x is the observed irradiance using spectral filter x, and F x,0 is the reference flux (zero-point) for that photometric filter.
For objects within the immediate neighborhood of the Sun, the absolute magnitude M and apparent magnitude m from any distance d (in parsecs, with 1 pc = 3.2616 light-years) are related by = = (), where F is the radiant flux measured at distance d (in parsecs), F 10 the radiant flux measured at distance 10 pc.
The gauss is the unit of magnetic flux density B in the system of Gaussian units and is equal to Mx/cm 2 or g/Bi/s 2, while the oersted is the unit of H-field. One tesla (T) corresponds to 10 4 gauss, and one ampere (A) per metre corresponds to 4π × 10 −3 oersted .
The SI unit of electric flux is the volt-meter (V·m), or, equivalently, newton-meter squared per coulomb (N·m 2 ·C −1). Thus, the unit of electric flux expressed in terms of SI base units is kg·m 3 ·s −3 ·A −1. Its dimensional formula is L 3 M T −3 I −1.