When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. AB magnitude - Wikipedia

    en.wikipedia.org/wiki/AB_magnitude

    The monochromatic AB magnitude is defined as the logarithm of a spectral flux density with the usual scaling of astronomical magnitudes and a zero-point of about 3 631 janskys (symbol Jy), [1] where 1 Jy = 10 −26 W Hz −1 m −2 = 10 −23 erg s −1 Hz −1 cm −2 ("about" because the true definition of the zero point is based on magnitudes as shown below).

  3. Zero point (photometry) - Wikipedia

    en.wikipedia.org/wiki/Zero_Point_(photometry)

    The zero point is used to calibrate a system to the standard magnitude system, as the flux detected from stars will vary from detector to detector. [2] Traditionally, Vega is used as the calibration star for the zero point magnitude in specific pass bands (U, B, and V), although often, an average of multiple stars is used for higher accuracy. [3]

  4. Spectral flux density - Wikipedia

    en.wikipedia.org/wiki/Spectral_flux_density

    The vector approach defines flux density as a vector at a point of space and time prescribed by the investigator. To distinguish this approach, one might speak of the 'full spherical flux density'. In this case, nature tells the investigator what is the magnitude, direction, and sense of the flux density at the prescribed point.

  5. Jansky - Wikipedia

    en.wikipedia.org/wiki/Jansky

    To calculate the flux density in janskys, the total power detected (in watts) is divided by the receiver collecting area (in square meters), and then divided by the detector bandwidth (in hertz). The flux density of astronomical sources is many orders of magnitude below 1 W·m −2 ·Hz −1 , so the result is multiplied by 10 26 to get a more ...

  6. Apparent magnitude - Wikipedia

    en.wikipedia.org/wiki/Apparent_magnitude

    Therefore, the magnitude m, in the spectral band x, would be given by = ⁡ (,), which is more commonly expressed in terms of common (base-10) logarithms as = ⁡ (,), where F x is the observed irradiance using spectral filter x, and F x,0 is the reference flux (zero-point) for that photometric filter.

  7. Absolute magnitude - Wikipedia

    en.wikipedia.org/wiki/Absolute_magnitude

    For objects within the immediate neighborhood of the Sun, the absolute magnitude M and apparent magnitude m from any distance d (in parsecs, with 1 pc = 3.2616 light-years) are related by = = (), where F is the radiant flux measured at distance d (in parsecs), F 10 the radiant flux measured at distance 10 pc.

  8. Gauss (unit) - Wikipedia

    en.wikipedia.org/wiki/Gauss_(unit)

    The gauss is the unit of magnetic flux density B in the system of Gaussian units and is equal to Mx/cm 2 or g/Bi/s 2, while the oersted is the unit of H-field. One tesla (T) corresponds to 10 4 gauss, and one ampere (A) per metre corresponds to 4π × 10 −3 oersted .

  9. Electric flux - Wikipedia

    en.wikipedia.org/wiki/Electric_flux

    The SI unit of electric flux is the volt-meter (V·m), or, equivalently, newton-meter squared per coulomb (N·m 2 ·C −1). Thus, the unit of electric flux expressed in terms of SI base units is kg·m 3 ·s −3 ·A −1. Its dimensional formula is L 3 M T −3 I −1.