When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    — The Matrix and Quaternions FAQ; Imaginary numbers are not Real – the Geometric Algebra of Spacetime – Section "Rotations and Geometric Algebra" derives and applies the rotor description of rotations; Starlino's DCM Tutorial – Direction cosine matrix theory tutorial and applications. Space orientation estimation algorithm using ...

  3. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    The direction cosine matrix (from the rotated Body XYZ coordinates to the original Lab xyz coordinates for a clockwise/lefthand rotation) corresponding to a post-multiply Body 3-2-1 sequence with Euler angles (ψ, θ, φ) is given by: [1]

  4. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...

  5. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    A quaternion that is slightly off still represents a rotation after being normalized: a matrix that is slightly off may not be orthogonal any more and is harder to convert back to a proper orthogonal matrix. Quaternions also avoid a phenomenon called gimbal lock which can result when, for example in pitch/yaw/roll rotational systems, the pitch ...

  6. Direction cosine - Wikipedia

    en.wikipedia.org/wiki/Direction_cosine

    More generally, direction cosine refers to the cosine of the angle between any two vectors. They are useful for forming direction cosine matrices that express one set of orthonormal basis vectors in terms of another set, or for expressing a known vector in a different basis. Simply put, direction cosines provide an easy method of representing ...

  7. Axis–angle representation - Wikipedia

    en.wikipedia.org/wiki/Axis–angle_representation

    The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...

  8. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    It turns out that g ∈ SO(3) represented in this way by Π u (g) can be expressed as a matrix Π u (g) ∈ SU(2) (where the notation is recycled to use the same name for the matrix as for the transformation of it represents). To identify this matrix, consider first a rotation g φ about the z-axis through an angle φ,

  9. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    is the rotation matrix through an angle θ counterclockwise about the axis k, and I the 3 × 3 identity matrix. [4] This matrix R is an element of the rotation group SO(3) of ℝ 3 , and K is an element of the Lie algebra s o ( 3 ) {\displaystyle {\mathfrak {so}}(3)} generating that Lie group (note that K is skew-symmetric, which characterizes ...