When.com Web Search

  1. Ads

    related to: spectrum math workbooks

Search results

  1. Results From The WOW.Com Content Network
  2. Spectrum (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Spectrum_(functional_analysis)

    In mathematics, particularly in functional analysis, the spectrum of a bounded linear operator (or, more generally, an unbounded linear operator) is a generalisation of the set of eigenvalues of a matrix.

  3. Spectrum of a matrix - Wikipedia

    en.wikipedia.org/wiki/Spectrum_of_a_matrix

    In mathematics, the spectrum of a matrix is the set of its eigenvalues. [ 1 ] [ 2 ] [ 3 ] More generally, if T : V → V {\displaystyle T\colon V\to V} is a linear operator on any finite-dimensional vector space , its spectrum is the set of scalars λ {\displaystyle \lambda } such that T − λ I {\displaystyle T-\lambda I} is not invertible .

  4. Decomposition of spectrum (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Decomposition_of_spectrum...

    The spectrum of T restricted to H ac is called the absolutely continuous spectrum of T, σ ac (T). The spectrum of T restricted to H sc is called its singular spectrum, σ sc (T). The set of eigenvalues of T is called the pure point spectrum of T, σ pp (T). The closure of the eigenvalues is the spectrum of T restricted to H pp.

  5. Spectral theorem - Wikipedia

    en.wikipedia.org/wiki/Spectral_theorem

    When this happens, we say that has "simple spectrum" in the sense of spectral multiplicity theory. That is, a bounded self-adjoint operator that admits a cyclic vector should be thought of as the infinite-dimensional generalization of a self-adjoint matrix with distinct eigenvalues (i.e., each eigenvalue has multiplicity one).

  6. Spectral geometry - Wikipedia

    en.wikipedia.org/wiki/Spectral_geometry

    Spectral geometry is a field in mathematics which concerns relationships between geometric structures of manifolds and spectra of canonically defined differential operators. The case of the Laplace–Beltrami operator on a closed Riemannian manifold has been most intensively studied, although other Laplace operators in differential geometry ...

  7. Resolvent formalism - Wikipedia

    en.wikipedia.org/wiki/Resolvent_formalism

    In mathematics, the resolvent formalism is a technique for applying concepts from complex analysis to the study of the spectrum of operators on Banach spaces and more general spaces. Formal justification for the manipulations can be found in the framework of holomorphic functional calculus.

  1. Ads

    related to: spectrum math workbooks