Search results
Results From The WOW.Com Content Network
The most common symbol for denoting approximate equality. For example, ~ 1. Between two numbers, either it is used instead of ≈ to mean "approximatively equal", or it means "has the same order of magnitude as". 2. Denotes the asymptotic equivalence of two functions or sequences. 3.
2008 Excel 12.0 (part of Office 2008) 2010 Excel 14.0 (part of Office 2011) 2015 Excel 15.0 (part of Office 2016—Office 2016 for Mac brings the Mac version much closer to parity with its Windows cousin, harmonizing many of the reporting and high-level developer functions, while bringing the ribbon and styling into line with its PC counterpart ...
Here the 'IEEE 754 double value' resulting of the 15 bit figure is 3.330560653658221E-15, which is rounded by Excel for the 'user interface' to 15 digits 3.33056065365822E-15, and then displayed with 30 decimals digits gets one 'fake zero' added, thus the 'binary' and 'decimal' values in the sample are identical only in display, the values ...
greek upsilon with hook symbol u+03d5: ϕ: greek phi symbol u+03f0: ϰ: greek kappa symbol u+03f1: ϱ: greek rho symbol u+03f4: ϴ: greek capital theta symbol u+03f5: ϵ: greek lunate epsilon symbol u+03f6 ϶ greek reversed lunate epsilon symbol
(the symbol may also indicate the domain and codomain of a function; see table of mathematical symbols). ⊃ {\displaystyle \supset } may mean the same as ⇒ {\displaystyle \Rightarrow } (the symbol may also mean superset ).
The greater-than sign is a mathematical symbol that denotes an inequality between two values. The widely adopted form of two equal-length strokes connecting in an acute angle at the right, > , has been found in documents dated as far back as 1631. [ 1 ]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The symbol is used to denote negation. For example, if P(x) is the predicate "x is greater than 0 and less than 1", then, for a domain of discourse X of all natural numbers, the existential quantification "There exists a natural number x which is greater than 0 and less than 1" can be symbolically stated as: