Search results
Results From The WOW.Com Content Network
One way to model this behavior is called stochastic rationality. It is assumed that each agent has an unobserved state, which can be considered a random variable. Given that state, the agent behaves rationally. In other words: each agent has, not a single preference-relation, but a distribution over preference-relations (or utility functions).
A naive way to determine the preferences is asking each partner to supply a numeric value for each possible bundle. For example, if the items to divide are a car and a bicycle, a partner may value the car as 800, the bicycle as 200, and the bundle {car, bicycle} as 900 (see Utility functions on indivisible goods for more examples).
Stochastic music was pioneered by Iannis Xenakis, who coined the term stochastic music. Specific examples of mathematics, statistics, and physics applied to music composition are the use of the statistical mechanics of gases in Pithoprakta, statistical distribution of points on a plane in Diamorphoses, minimal constraints in Achorripsis, the ...
Applications and the study of phenomena have in turn inspired the proposal of new stochastic processes. Examples of such stochastic processes include the Wiener process or Brownian motion process, [a] used by Louis Bachelier to study price changes on the Paris Bourse, [21] and the Poisson process, used by A. K. Erlang to study the number of ...
Example of a simple MDP with three states (green circles) and two actions (orange circles), with two rewards (orange arrows) A Markov decision process is a 4-tuple (,,,), where: is a set of states called the state space. The state space may be discrete or continuous, like the set of real numbers.
For example, if the constant, c, equals 1, the probabilities of a move to the left at positions x = −2,−1,0,1,2 are given by ,,,, respectively. The random walk has a centering effect that weakens as c increases.
In the case where the maximization is an integral of a concave function of utility over an horizon (0,T), dynamic programming is used. There is no certainty equivalence as in the older literature, because the coefficients of the control variables—that is, the returns received by the chosen shares of assets—are stochastic.
The optimization of portfolios is an example of multi-objective optimization in economics. Since the 1970s, economists have modeled dynamic decisions over time using control theory. [14] For example, dynamic search models are used to study labor-market behavior. [15] A crucial distinction is between deterministic and stochastic models. [16]