Ad
related to: discrete optimization algorithms in machine learning
Search results
Results From The WOW.Com Content Network
Discrete optimization is a branch of optimization in applied mathematics and computer science. As opposed to continuous optimization , some or all of the variables used in a discrete optimization problem are restricted to be discrete variables —that is, to assume only a discrete set of values, such as the integers .
It is particularly useful in machine learning for minimizing the cost or loss function. [1] Gradient descent should not be confused with local search algorithms, although both are iterative methods for optimization. Gradient descent is generally attributed to Augustin-Louis Cauchy, who first suggested it in 1847. [2]
Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete: An optimization problem with discrete variables is known as a discrete optimization, in which an object such as an integer, permutation or graph must be found from a countable set.
A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.
In machine learning, Littlestone and Warmuth generalized the winnow algorithm to the weighted majority algorithm. [11] Later, Freund and Schapire generalized it in the form of hedge algorithm. [12] AdaBoost Algorithm formulated by Yoav Freund and Robert Schapire also employed the Multiplicative Weight Update Method. [1]
Limited-memory BFGS (L-BFGS or LM-BFGS) is an optimization algorithm in the family of quasi-Newton methods that approximates the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) using a limited amount of computer memory. [1] It is a popular algorithm for parameter estimation in machine learning.
There are several schools of thought as to why and how the PSO algorithm can perform optimization. A common belief amongst researchers is that the swarm behaviour varies between exploratory behaviour, that is, searching a broader region of the search-space, and exploitative behaviour, that is, a locally oriented search so as to get closer to a ...
In machine learning, hyperparameter optimization [1] or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [2] [3]