Search results
Results From The WOW.Com Content Network
The smallest asymmetric regular graphs have ten vertices; there exist 10-vertex asymmetric graphs that are 4-regular and 5-regular. [2] [3] One of the five smallest asymmetric cubic graphs [4] is the twelve-vertex Frucht graph discovered in 1939. [5] According to a strengthened version of Frucht's theorem, there are infinitely many asymmetric ...
Additional families of symmetric graphs with an even number of vertices 2n, are the evenly split complete bipartite graphs K n,n and the crown graphs on 2n vertices. Many other symmetric graphs can be classified as circulant graphs (but not all). The Rado graph forms an example of a symmetric graph with infinitely many vertices and infinite degree.
Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations. [1] Given a structured object X of any sort, a symmetry is a mapping of the object onto itself which preserves the structure.
A drawing of a butterfly with bilateral symmetry, with left and right sides as mirror images of each other. In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under the transform). [1]
A Hasse diagram is a simple picture of a finite partially ordered set, forming a drawing of the partial order's transitive reduction. Concretely, one represents each element of the set as a vertex on the page and draws a line segment or curve that goes upward from x to y precisely when x < y and there is no z such that x < z < y.
A graph drawing should not be confused with the graph itself (the abstract, non-visual structure) as there are several ways to structure the graph drawing. All that matters is which vertices are connected to which others by how many edges and not the exact layout. In practice, it is often difficult to decide if two drawings represent the same ...
Generalizing from geometrical symmetry in the previous section, one can say that a mathematical object is symmetric with respect to a given mathematical operation, if, when applied to the object, this operation preserves some property of the object. [15] The set of operations that preserve a given property of the object form a group.
In mathematics, a symmetry operation is a geometric transformation of an object that leaves the object looking the same after it has been carried out. For example, a 1 ⁄ 3 turn rotation of a regular triangle about its center, a reflection of a square across its diagonal, a translation of the Euclidean plane, or a point reflection of a sphere through its center are all symmetry operations.