Search results
Results From The WOW.Com Content Network
A contrast is defined as the sum of each group mean multiplied by a coefficient for each group (i.e., a signed number, c j). [10] In equation form, = ¯ + ¯ + + ¯ ¯, where L is the weighted sum of group means, the c j coefficients represent the assigned weights of the means (these must sum to 0 for orthogonal contrasts), and ¯ j represents the group means. [8]
Example of orthogonal factorial design Orthogonality concerns the forms of comparison (contrasts) that can be legitimately and efficiently carried out. Contrasts can be represented by vectors and sets of orthogonal contrasts are uncorrelated and independently distributed if the data are normal.
This particular chemical equation is an example of complete combustion. The numbers in front of each quantity are a set of stoichiometric coefficients which directly reflect the molar ratios between the products and reactants. Stoichiometry measures these quantitative relationships, and is used to determine the amount of products and reactants ...
The property that allows individual effects of the k-factors to be estimated independently without (or with minimal) confounding. Also orthogonality provides minimum variance estimates of the model coefficient so that they are uncorrelated. Rotatability The property of rotating points of the design about the center of the factor space.
The expansion coefficients are the analogs of Fourier coefficients, and can be obtained by multiplying the above equation by the complex conjugate of a spherical harmonic, integrating over the solid angle Ω, and utilizing the above orthogonality relationships. This is justified rigorously by basic Hilbert space theory.
A chemical equation is the symbolic representation of a chemical reaction in the form of symbols and chemical formulas.The reactant entities are given on the left-hand side and the product entities are on the right-hand side with a plus sign between the entities in both the reactants and the products, and an arrow that points towards the products to show the direction of the reaction. [1]
The reduced Kronecker coefficients are structure constants of Deligne categories of representations of with . [9] In contrast to Kronecker coefficients, reduced Kronecker coefficients are defined for any triple of Young diagrams, not necessarily of the same size.
If , the orthogonal regression line goes through the centroid and is parallel to the vector from the origin to . A trigonometric representation of the orthogonal regression line was given by Coolidge in 1913. [6]