Ad
related to: orthogonal contrast coefficients examples math definition chemistry calculator
Search results
Results From The WOW.Com Content Network
A contrast is defined as the sum of each group mean multiplied by a coefficient for each group (i.e., a signed number, c j). [10] In equation form, = ¯ + ¯ + + ¯ ¯, where L is the weighted sum of group means, the c j coefficients represent the assigned weights of the means (these must sum to 0 for orthogonal contrasts), and ¯ j represents the group means. [8]
The roots of the characteristic polynomial () are the eigenvalues of ().If there are n distinct eigenvalues , …,, then () is diagonalizable as () =, where D is the diagonal matrix and V is the Vandermonde matrix corresponding to the λ 's: = [], = [].
A contrast in cell means is a linear combination of cell means in which the coefficients sum to 0. Contrasts are of interest in themselves, and are the building blocks by which main effects and interactions are defined. In the 2 × 3 experiment illustrated here, the expression
The expansion coefficients are the analogs of Fourier coefficients, and can be obtained by multiplying the above equation by the complex conjugate of a spherical harmonic, integrating over the solid angle Ω, and utilizing the above orthogonality relationships. This is justified rigorously by basic Hilbert space theory.
The property that allows individual effects of the k-factors to be estimated independently without (or with minimal) confounding. Also orthogonality provides minimum variance estimates of the model coefficient so that they are uncorrelated. Rotatability The property of rotating points of the design about the center of the factor space.
This example of design experiments is attributed to Harold Hotelling, building on examples from Frank Yates. [22] [23] [15] The experiments designed in this example involve combinatorial designs. [24] Weights of eight objects are measured using a pan balance and set of standard weights. Each weighing measures the weight difference between ...
In vector calculus, the Jacobian matrix (/ dʒ ə ˈ k oʊ b i ə n /, [1] [2] [3] / dʒ ɪ-, j ɪ-/) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives.
This is a table of Clebsch–Gordan coefficients used for adding angular momentum values in quantum mechanics. The overall sign of the coefficients for each set of constant j 1 {\displaystyle j_{1}} , j 2 {\displaystyle j_{2}} , j {\displaystyle j} is arbitrary to some degree and has been fixed according to the Condon–Shortley and Wigner sign ...