When.com Web Search

  1. Ad

    related to: gauss curvature of sphere worksheet 1

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    The Gaussian curvature is the product of the two principal curvatures Κ = κ 1 κ 2. The sign of the Gaussian curvature can be used to characterise the surface. If both principal curvatures are of the same sign: κ 1 κ 2 > 0, then the Gaussian curvature is positive and the surface is said to have an elliptic point. At such points, the surface ...

  3. Theorema Egregium - Wikipedia

    en.wikipedia.org/wiki/Theorema_egregium

    A sphere of radius R has constant Gaussian curvature which is equal to 1/R 2. At the same time, a plane has zero Gaussian curvature. As a corollary of Theorema Egregium, a piece of paper cannot be bent onto a sphere without crumpling. Conversely, the surface of a sphere cannot be unfolded onto a flat plane without distorting the distances.

  4. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    If a surface has constant Gaussian curvature, it is called a surface of constant curvature. [52] The unit sphere in E 3 has constant Gaussian curvature +1. The Euclidean plane and the cylinder both have constant Gaussian curvature 0. A unit pseudosphere has constant Gaussian curvature -1 (apart from its equator, that is singular).

  5. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...

  6. First fundamental form - Wikipedia

    en.wikipedia.org/wiki/First_fundamental_form

    The Gaussian curvature of a surface is given by = =, where L, M, and N are the coefficients of the second fundamental form. Theorema egregium of Gauss states that the Gaussian curvature of a surface can be expressed solely in terms of the first fundamental form and its derivatives, so that K is in fact an intrinsic invariant of the surface.

  7. Curvature of Riemannian manifolds - Wikipedia

    en.wikipedia.org/wiki/Curvature_of_Riemannian...

    The curvature of a Riemannian manifold can be described in various ways; the most standard one is the curvature tensor, given in terms of a Levi-Civita connection (or covariant differentiation) ⁠ ⁠ and Lie bracket ⁠ [,] ⁠ by the following formula: (,) = [,].

  8. Gauss map - Wikipedia

    en.wikipedia.org/wiki/Gauss_Map

    The Gauss map can be defined for hypersurfaces in R n as a map from a hypersurface to the unit sphere S n − 1 ⊆ R n. For a general oriented k-submanifold of R n the Gauss map can also be defined, and its target space is the oriented Grassmannian ~,, i.e. the set of all oriented k-planes in R n. In this case a point on the submanifold is ...

  9. Non-positive curvature - Wikipedia

    en.wikipedia.org/wiki/Non-positive_curvature

    However the Gauss–Bonnet theorem ensures that the topology of a surface places constraints on the complete Riemannian metrics which may be imposed on a surface so the study of metric spaces of non-positive curvature is of vital interest in both the mathematical fields of geometry and topology.