Search results
Results From The WOW.Com Content Network
Commercial rubidium clocks are less accurate than caesium atomic clocks, which serve as primary frequency standards, so a rubidium clock is usually used as a secondary frequency standard. Commercial rubidium frequency standards operate by disciplining a crystal oscillator to the rubidium hyperfine transition of 6.8 GHz (6 834 682 610.904 Hz).
Block diagram of a feedback oscillator circuit to which the Barkhausen criterion applies. It consists of an amplifying element A whose output v o is fed back into its input v f through a feedback network β(jω). To find the loop gain, the feedback loop is considered broken at some point and the output v o for a given input v i is calculated:
A crystal oscillator is an electronic oscillator circuit that uses a piezoelectric crystal as a frequency-selective element. [1] [2] [3] The oscillator frequency is often used to keep track of time, as in quartz wristwatches, to provide a stable clock signal for digital integrated circuits, and to stabilize frequencies for radio transmitters and receivers.
A quadrupole electric field is displayed for reference, which oscillates at a given frequency . The blue line represents the ion path in the transversal (or radial) direction of a linear trap, while the orange line is the secular (slow) motion resulting from the ponderomotive force due to the electric field onto the ion.
Rubidium is a chemical element; it has symbol Rb and atomic number 37. It is a very soft, whitish-grey solid in the alkali metal group, similar to potassium and caesium. [9] Rubidium is the first alkali metal in the group to have a density higher than water.
Atomic clocks based on rubidium standards are therefore regarded as secondary representations of the second. Rubidium standard clocks are prized for their low cost, small size (commercial standards are as small as 1.7 × 10 5 mm 3) [33] and short-term stability. They are used in many commercial, portable and aerospace applications.
The Smith chart (sometimes also called Smith diagram, Mizuhashi chart (水橋チャート), Mizuhashi–Smith chart (水橋スミスチャート), [1] [2] [3] Volpert–Smith chart (Диаграмма Вольперта—Смита) [4] [5] or Mizuhashi–Volpert–Smith chart) is a graphical calculator or nomogram designed for electrical and electronics engineers specializing in radio ...
In spectroscopy, oscillator strength is a dimensionless quantity that expresses the probability of absorption or emission of electromagnetic radiation in transitions between energy levels of an atom or molecule. [1] [2] For example, if an emissive state has a small oscillator strength, nonradiative decay will outpace radiative decay.