Search results
Results From The WOW.Com Content Network
When studying or discussing explosive safety, or the safety of systems containing explosives, the terms deflagration, detonation and deflagration-to-detonation transition (commonly referred to as DDT) must be understood and used appropriately to convey relevant information.
Detonation (from Latin detonare 'to thunder down/forth') [1] is a type of combustion involving a supersonic exothermic front accelerating through a medium that eventually drives a shock front propagating directly in front of it.
The phenomenon is exploited in pulse detonation engines, because a detonation produces a more efficient combustion of the reactants than a deflagration does, i.e. giving a higher yields. Such engines typically employ a Shchelkin spiral in the combustion chamber to facilitate the deflagration to detonation transition. [2] [3]
Imprecise contact between the bridgewire and the primary explosive changes how quickly the explosive is heated up, and minor electrical variations in the wire or leads will change how quickly it heats up as well. The heating process typically takes milliseconds to tens of milliseconds to complete and initiate detonation in the primary explosive.
This Detonation Flame Arrester is being tested for an 8-inch piping system at Brooker Laboratory Testing Company to the USCG 33cfr154.1325 Standard. Detonation Flame Arresters for various pipe sizes from Paradox Intellectual Inc. The largest detonation flame arrester ever built at the time, weighing 10 tons, for 30 inch pipe.
HEVR dispersal defined as an explosion or "violent" reaction that outside of a laboratory or test-range environment can only be described as a continuum from violent deflagration to detonation (assumed 100% aerosolization).
The test was designed as a scaled-down investigation of the effects of a 23-kiloton ground-penetrating gun-type fission weapon that was then being considered for use as a cratering and bunker-buster weapon. [13] The explosion resulted in a cloud that rose to 11,500 ft (3,500 m), and deposited fallout to the north and north-northeast. [14]
Instead of directly coupling the shock wave from the exploding wire (as the bridgewire does), the expanding plasma from an explosion of a metal foil drives another thin plastic or metal foil called a "flyer" or a "slapper" across a gap, and its high-velocity impact on an explosive (for example, PETN or hexanitrostilbene) then delivers the ...