Ad
related to: cubic spline excel cell
Search results
Results From The WOW.Com Content Network
Paper which explains step by step how cubic spline interpolation is done, but only for equidistant knots. Numerical Recipes in C, Go to Chapter 3 Section 3-3; A note on cubic splines; Information about spline interpolation (including code in Fortran 77) TinySpline:Open source C-library for splines which implements cubic spline interpolation
Bicubic interpolation can be accomplished using either Lagrange polynomials, cubic splines, or cubic convolution algorithm. In image processing , bicubic interpolation is often chosen over bilinear or nearest-neighbor interpolation in image resampling , when speed is not an issue.
The next most simple spline has degree 1. It is also called a linear spline. A closed linear spline (i.e, the first knot and the last are the same) in the plane is just a polygon. A common spline is the natural cubic spline. A cubic spline has degree 3 with continuity C 2, i.e. the values and first and second derivatives are continuous. Natural ...
Example showing non-monotone cubic interpolation (in red) and monotone cubic interpolation (in blue) of a monotone data set. Monotone interpolation can be accomplished using cubic Hermite spline with the tangents m i {\displaystyle m_{i}} modified to ensure the monotonicity of the resulting Hermite spline.
The most familiar example is the cubic smoothing spline, but there are many other possibilities, including for the case where is a vector quantity. Cubic spline ...
Note that similar generalizations can be made for other types of spline interpolations, including Hermite splines. In regards to efficiency, the general formula can in fact be computed as a composition of successive C I N T {\displaystyle \mathrm {CINT} } -type operations for any type of tensor product splines, as explained in the tricubic ...
Spline interpolation — interpolation by piecewise polynomials Spline (mathematics) — the piecewise polynomials used as interpolants; Perfect spline — polynomial spline of degree m whose mth derivate is ±1; Cubic Hermite spline. Centripetal Catmull–Rom spline — special case of cubic Hermite splines without self-intersections or cusps
Cubic polynomial splines are extensively used in computer graphics and geometric modeling to obtain curves or motion trajectories that pass through specified points of the plane or three-dimensional space. In these applications, each coordinate of the plane or space is separately interpolated by a cubic spline function of a separate parameter t.