Ads
related to: anion exchange membrane material
Search results
Results From The WOW.Com Content Network
Poly(fluorenyl-co-aryl piperidinium) (PFAP)-based anion exchange materials (electrolyte membrane and electrode binder) with high ion conductivity and durability under alkaline conditions has been demonstrated for use to extract hydrogen from water. Performance was 7.68 A/cm 2 at 2 V, some 6x the
Anion exchange membrane (AEM) electrolysis is the electrolysis of water that utilises a semipermeable membrane that conducts hydroxide ions (OH −) called an anion exchange membrane. Like a proton-exchange membrane (PEM), the membrane separates the products, provides electrical insulation between electrodes, and conducts ions.
An ion-exchange membrane is generally made of organic or inorganic polymer with charged (ionic) side groups, such as ion-exchange resins. Anion-exchange membranes contain fixed cationic groups with predominantly mobile anions; because anions are the majority species, most of the conductivity is due to anion transport.
Ion-exchange resin beads. An ion-exchange resin or ion-exchange polymer is a resin or polymer that acts as a medium for ion exchange, that is also known as an ionex. [1] It is an insoluble matrix (or support structure) normally in the form of small (0.25–1.43 mm radius) microbeads, usually white or yellowish, fabricated from an organic polymer substrate.
An alkaline anion-exchange membrane fuel cell (AAEMFC), also known as anion-exchange membrane fuel cells (AEMFCs), alkaline membrane fuel cells (AMFCs), hydroxide-exchange membrane fuel cells (HEMFCs), or solid alkaline fuel cells (SAFCs) is a type of alkaline fuel cell that uses an anion-exchange membrane to separate the anode and cathode compartments.
However, the simultaneous exchange of cations and anions is often performed in mixed beds, which contain a mixture of anion- and cation-exchange resins, or passing the solution through several different ion-exchange materials. Ion exchanger. This device is packed with ion-exchange resin.
The membrane-embedded C-terminal domains may each span the membrane 13-16 times. According to the model of Zhu et al. (2003), AE1 in humans spans the membrane 16 times, 13 times as α-helix, and three times (TMSs 10, 11 and 14) possibly as β-strands. [12] AE1 preferentially catalyzes anion exchange reactions. Specific point mutations in human ...
Reverse electrodialysis is a technology based on membranes which gets electricity from a mixing of two water streams with different salinities. It commonly uses anion exchange membranes (AEM) and cation exchange membranes (CEM). AEMs are used to allow the pass of anions and obstruct the pass of cations and CEMs are used to do the opposite.