Ad
related to: cooling tower system design definition science
Search results
Results From The WOW.Com Content Network
A typical large refinery processing 40,000 metric tonnes of crude oil per day (300,000 barrels (48,000 m 3) per day) circulates about 80,000 cubic metres of water per hour through its cooling tower system. The world's tallest cooling tower is the 210 metres (690 ft) tall cooling tower of the Pingshan II Power Station in Huaibei, Anhui Province ...
The cooling towers of a large chilled water system. As part of a chilled water system, the condenser water absorbs heat from the refrigerant in the condenser barrel of the water chiller and is then sent via return lines to a cooling tower, which is a heat exchange device used to transfer waste heat to the atmosphere.
For arid climates with a great wet-bulb depression, cooling towers can provide enough cooling during summer design conditions to be net zero. For example, a 371 m 2 (4,000 ft 2 ) retail store in Tucson, Arizona with a sensible heat gain of 29.3 kJ/h (100,000 Btu/h) can be cooled entirely by two passive cooling towers providing 11890 m 3 /h ...
Hence they are more commonly used in purpose-driven structures, such as water towers (to support a large mass), cooling towers, and aesthetic features. [3] A hyperbolic structure is beneficial for cooling towers. At the bottom, the widening of the tower provides a large area for installation of fill to promote thin film evaporative cooling of ...
Canton Tower, Guangzhou, China Kobe Port Tower, Kobe, Japan Cooling tower, Puertollano, Spain. This page is a list of hyperboloid structures. These were first applied in architecture by Russian engineer Vladimir Shukhov (1853–1939). Shukhov built his first example as a water tower (hyperbolic shell) for the 1896 All-Russian Exposition.
A chilled beam is a type of radiation/convection HVAC system designed to heat and cool large buildings through the use of water. [1] This method removes most of the zone sensible local heat gains and allows the flow rate of pre-conditioned air from the air handling unit to be reduced, lowering by 60% to 80% the ducted design airflow rate and the equipment capacity requirements.
Passive cooling covers all natural processes and techniques of heat dissipation and modulation without the use of energy. [1] Some authors consider that minor and simple mechanical systems (e.g. pumps and economizers) can be integrated in passive cooling techniques, as long they are used to enhance the effectiveness of the natural cooling process. [7]
Water is inexpensive, non-toxic, and available over most of the earth's surface.Liquid cooling offers higher thermal conductivity than air cooling. Water has unusually high specific heat capacity among commonly available liquids at room temperature and atmospheric pressure allowing efficient heat transfer over distance with low rates of mass transfer.