Search results
Results From The WOW.Com Content Network
Coplanarity. In geometry, a set of points in space are coplanar if there exists a geometric plane that contains them all. For example, three points are always coplanar, and if the points are distinct and non-collinear, the plane they determine is unique. However, a set of four or more distinct points will, in general, not lie in a single plane.
Skew lines. Rectangular parallelepiped. The line through segment AD and the line through segment B 1 B are skew lines because they are not in the same plane. In three-dimensional geometry, skew lines are two lines that do not intersect and are not parallel. A simple example of a pair of skew lines is the pair of lines through opposite edges of ...
In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. [1][2] Such a drawing is called a plane graph, or a planar embedding of the graph.
In geometry, a secant is a line that intersects a curve at a minimum of two distinct points. [1] The word secant comes from the Latin word secare, meaning to cut. [2] In the case of a circle, a secant intersects the circle at exactly two points. A chord is the line segment determined by the two points, that is, the interval on the secant whose ...
A Delaunay triangulation in the plane with circumcircles shown. In computational geometry, a Delaunay triangulation or Delone triangulation of a set of points in the plane subdivides their convex hull [1] into triangles whose circumcircles do not contain any of the points. This maximizes the size of the smallest angle in any of the triangles ...
Polyhedron. In geometry, a polyhedron (pl.: polyhedra or polyhedrons; from Greek πολύ (poly-) 'many' and ἕδρον (-hedron) 'base, seat') is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is a polyhedron that bounds a convex set.
The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .
In physics, specifically classical mechanics, the three-body problem is to take the initial positions and velocities (or momenta) of three point masses that orbit each other in space and calculate their subsequent trajectories using Newton's laws of motion and Newton's law of universal gravitation. [1]