When.com Web Search

  1. Ads

    related to: capacitor physics diagram practice worksheet 1 5 angle bisectors

Search results

  1. Results From The WOW.Com Content Network
  2. Angle bisector theorem - Wikipedia

    en.wikipedia.org/wiki/Angle_bisector_theorem

    The angle bisector theorem is commonly used when the angle bisectors and side lengths are known. It can be used in a calculation or in a proof. An immediate consequence of the theorem is that the angle bisector of the vertex angle of an isosceles triangle will also bisect the opposite side.

  3. Gyrator–capacitor model - Wikipedia

    en.wikipedia.org/wiki/Gyrator–capacitor_model

    The value of each capacitor in farads is the same as the inductance of the associated permeance in henrys. N 1, N 2, and N 3 are the number of turns in the three primary windings. N 4, N 5, and N 6 are the number of turns in the three secondary windings. Φ 1, Φ 2, and Φ 3 are the fluxes in the three vertical elements.

  4. Bisection - Wikipedia

    en.wikipedia.org/wiki/Bisection

    Three intersection points, each of an external angle bisector with the opposite extended side, are collinear (fall on the same line as each other). [3]: p. 149 Three intersection points, two of them between an interior angle bisector and the opposite side, and the third between the other exterior angle bisector and the opposite side extended ...

  5. Dissipation factor - Wikipedia

    en.wikipedia.org/wiki/Dissipation_factor

    The loss tangent is defined by the angle between the capacitor's impedance vector and the negative reactive axis. If the capacitor is used in an AC circuit, the dissipation factor due to the non-ideal capacitor is expressed as the ratio of the resistive power loss in the ESR to the reactive power oscillating in the capacitor, or

  6. Electric displacement field - Wikipedia

    en.wikipedia.org/wiki/Electric_displacement_field

    A parallel plate capacitor. Using an imaginary box, it is possible to use Gauss's law to explain the relationship between electric displacement and free charge. Consider an infinite parallel plate capacitor where the space between the plates is empty or contains a neutral, insulating medium. In both cases, the free charges are only on the metal ...

  7. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    The center of the incircle, called the incenter, can be found as the intersection of the three internal angle bisectors. [3] [4] The center of an excircle is the intersection of the internal bisector of one angle (at vertex A, for example) and the external bisectors of the other two.

  8. Dielectric loss - Wikipedia

    en.wikipedia.org/wiki/Dielectric_loss

    The ESR represents losses in the capacitor. In a low-loss capacitor the ESR is very small (the conduction is high leading to a low resistivity), and in a lossy capacitor the ESR can be large. Note that the ESR is not simply the resistance that would be measured across a capacitor by an ohmmeter. The ESR is a derived quantity representing the ...

  9. Capacitance–voltage profiling - Wikipedia

    en.wikipedia.org/wiki/Capacitance–voltage...

    The technique uses a metal–semiconductor junction (Schottky barrier) or a p–n junction [1] or a MOSFET to create a depletion region, a region which is empty of conducting electrons and holes, but may contain ionized donors and electrically active defects or traps. The depletion region with its ionized charges inside behaves like a capacitor.