Ads
related to: necessary and sufficient conditions math problems
Search results
Results From The WOW.Com Content Network
A condition can be both necessary and sufficient. For example, at present, "today is the Fourth of July" is a necessary and sufficient condition for "today is Independence Day in the United States". Similarly, a necessary and sufficient condition for invertibility of a matrix M is that M has a nonzero determinant.
The essential difference between this and other well-known moment problems is that this is on a bounded interval, whereas in the Stieltjes moment problem one considers a half-line [0, ∞), and in the Hamburger moment problem one considers the whole line (−∞, ∞). The Stieltjes moment problems and the Hamburger moment problems, if they are ...
In each case, the theorem gives a necessary and sufficient condition for an object to exist: The combinatorial formulation answers whether a finite collection of sets has a transversal—that is, whether an element can be chosen from each set without repetition. Hall's condition is that for any group of sets from the collection, the total ...
The necessary conditions are sufficient for optimality if the objective function of a maximization problem is a differentiable concave function, the inequality constraints are differentiable convex functions, the equality constraints are affine functions, and Slater's condition holds. [11]
In mathematical analysis, Krein's condition provides a necessary and sufficient condition for exponential sums {= (),,},to be dense in a weighted L 2 space on the real line.
The Gale–Ryser theorem is a result in graph theory and combinatorial matrix theory, two branches of combinatorics.It provides one of two known approaches to solving the bipartite realization problem, i.e. it gives a necessary and sufficient condition for two finite sequences of natural numbers to be the degree sequence of a labeled simple bipartite graph; a sequence obeying these conditions ...
The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence. The main condition is the equicontinuity of
Some sources [9] [10] state a sufficient condition for the complex differentiability at a point as, in addition to the Cauchy–Riemann equations, the partial derivatives of and be continuous at the point because this continuity condition ensures the existence of the aforementioned linear approximation. Note that it is not a necessary condition ...