Search results
Results From The WOW.Com Content Network
Hexadecimal (also known as base-16 or simply hex) is a positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen.
This template makes it easy to convert from decimal to hexadecimal. Usage. Use: {{Hexadecimal|x}} where x is the decimal number to be converted to a hexadecimal ...
The F16C extension in 2012 allows x86 processors to convert half-precision floats to and from single-precision ... (2 11) ≈ 3.311 decimal ... Hex Value Notes 0 ...
Six hexadecimal digits of precision is roughly equivalent to six decimal digits (i.e. (6 − 1) log 10 (16) ≈ 6.02). A conversion of single precision hexadecimal float to decimal string would require at least 9 significant digits (i.e. 6 log 10 (16) + 1 ≈ 8.22) in order to convert back to the same hexadecimal float value.
Such conversion is available for both advanced calculators and programming languages. For example, the hexadecimal representation of the 24 bits above is 4D616E. The octal representation is 23260556. Those 8 octal digits can be split into pairs (23 26 05 56), and each pair is converted to decimal to yield 19 22 05 46.
This is because the radix of the hexadecimal system (16) is a power of the radix of the binary system (2). More specifically, 16 = 2 4, so it takes four digits of binary to represent one digit of hexadecimal, as shown in the adjacent table. To convert a hexadecimal number into its binary equivalent, simply substitute the corresponding binary ...
The Q notation is a way to specify the parameters of a binary fixed point number format. For example, in Q notation, the number format denoted by Q8.8 means that the fixed point numbers in this format have 8 bits for the integer part and 8 bits for the fraction part.
In computer science, the double dabble algorithm is used to convert binary numbers into binary-coded decimal (BCD) notation. [ 1 ] [ 2 ] It is also known as the shift-and-add -3 algorithm , and can be implemented using a small number of gates in computer hardware, but at the expense of high latency .