Search results
Results From The WOW.Com Content Network
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
In logic, equality is a primitive predicate (a statement that may have free variables) with the reflexive property (called the Law of identity), and the substitution property. From those, one can derive the rest of the properties usually needed for equality.
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...
The equals sign (British English) or equal sign (American English), also known as the equality sign, is the mathematical symbol =, which is used to indicate equality in some well-defined sense. [1] In an equation , it is placed between two expressions that have the same value, or for which one studies the conditions under which they have the ...
An alternative notation for this usage is to typeset the letters "def" above an ordinary equality sign, =. [14] Similarly, another alternative notation for this usage is to precede the equals sign with a colon, :=. The colon notation has the advantage that it reflects the inherent asymmetry in the definition of one object from already defined ...
Magnitudes are said to be in the same ratio, the first to the second and the third to the fourth when, if any equimultiples whatever be taken of the first and third, and any equimultiples whatever of the second and fourth, the former equimultiples alike exceed, are alike equal to, or alike fall short of, the latter equimultiples respectively ...
On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems (PDF) (Thesis). Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993), Solving ordinary differential equations I: Nonstiff problems , Berlin, New York: Springer-Verlag , ISBN 978-3-540-56670-0 .