Ads
related to: limit test calculus
Search results
Results From The WOW.Com Content Network
Calculus ′ = () ... the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite ...
The test is inconclusive if the limit of the summand is zero. This is also known as the nth-term test, ... The Calculus, with Analytic Geometry (2nd ed.).
In mathematics, the nth-term test for divergence [1] is a simple test for the divergence of an infinite series: If lim n → ∞ a n ≠ 0 {\displaystyle \lim _{n\to \infty }a_{n}\neq 0} or if the limit does not exist, then ∑ n = 1 ∞ a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} diverges.
In mathematics, a limit is the value that a function (or sequence) approaches as the argument (or index) approaches some value. [1] Limits of functions are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals.
In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.
The ratio test states that: if L < 1 then the series converges absolutely;; if L > 1 then the series diverges;; if L = 1 or the limit fails to exist, then the test is inconclusive, because there exist both convergent and divergent series that satisfy this case.
Although implicit in the development of calculus of the 17th and 18th centuries, the modern idea of the limit of a function goes back to Bolzano who, in 1817, introduced the basics of the epsilon-delta technique (see (ε, δ)-definition of limit below) to define continuous functions.
In mathematical analysis, the alternating series test is the method used to show that an alternating series is convergent when its terms (1) decrease in absolute value, and (2) approach zero in the limit. The test was used by Gottfried Leibniz and is sometimes known as Leibniz's test, Leibniz's rule, or the Leibniz criterion. The test is only ...