When.com Web Search

  1. Ads

    related to: exponents quizzes free printable

Search results

  1. Results From The WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.

  3. Error exponents in hypothesis testing - Wikipedia

    en.wikipedia.org/wiki/Error_exponents_in...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  4. List of Mersenne primes and perfect numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_Mersenne_primes...

    [1] [2] The exponents p corresponding to Mersenne primes must themselves be prime, although the vast majority of primes p do not lead to Mersenne primes—for example, 2 11 − 1 = 2047 = 23 × 89. [3] Perfect numbers are natural numbers that equal the sum of their positive proper divisors, which are divisors excluding the number itself.

  5. Order of operations - Wikipedia

    en.wikipedia.org/wiki/Order_of_operations

    When exponents were introduced in the 16th and 17th centuries, they were given precedence over both addition and multiplication and placed as a superscript to the right of their base. [2] Thus 3 + 5 2 = 28 and 3 × 5 2 = 75. These conventions exist to avoid notational ambiguity while allowing notation to remain brief. [4]

  6. Trinomial expansion - Wikipedia

    en.wikipedia.org/wiki/Trinomial_expansion

    The trinomial expansion can be calculated by applying the binomial expansion twice, setting = +, which leads to (+ +) = (+) = = = = (+) = = = ().Above, the resulting (+) in the second line is evaluated by the second application of the binomial expansion, introducing another summation over the index .

  7. Legendre's formula - Wikipedia

    en.wikipedia.org/wiki/Legendre's_formula

    Since ! is the product of the integers 1 through n, we obtain at least one factor of p in ! for each multiple of p in {,, …,}, of which there are ⌊ ⌋.Each multiple of contributes an additional factor of p, each multiple of contributes yet another factor of p, etc. Adding up the number of these factors gives the infinite sum for (!