Search results
Results From The WOW.Com Content Network
In mathematics, an n-sphere or hypersphere is an -dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional, and the sphere 2-dimensional, because the surfaces themselves are 1- and 2-dimensional respectively, not because they ...
In mathematics, a hypersphere or 3-sphere is a 4-dimensional analogue of a sphere, and is the 3-dimensional n-sphere. In 4-dimensional Euclidean space, it is the set of points equidistant from a fixed central point. The interior of a 3-sphere is a 4-ball.
The volume of the n-ball () can be computed by integrating the volume element in spherical coordinates. The spherical coordinate system has a radial coordinate r and angular coordinates φ 1 , …, φ n − 1 , where the domain of each φ except φ n − 1 is [0, π ) , and the domain of φ n − 1 is [0, 2 π ) .
A ball in n dimensions is called a hyperball or n-ball and is bounded by a hypersphere or (n−1)-sphere. Thus, for example, a ball in the Euclidean plane is the same thing as a disk, the area bounded by a circle. In Euclidean 3-space, a ball is taken to be the volume bounded by a 2-dimensional sphere. In a one-dimensional space, a ball is a ...
In differential topology, the Hopf fibration (also known as the Hopf bundle or Hopf map) describes a 3-sphere (a hypersphere in four-dimensional space) in terms of circles and an ordinary sphere. Discovered by Heinz Hopf in 1931, it is an influential early example of a fiber bundle .
hypersphere volume and surface area graphs: Image title: Graphs of volumes and surface areas of n-spheres of radius 1 by CMG Lee. The apparent intersection is an artifact of the differing scales. In the SVG file, hover over a point to see its decimal value. Width: 100%: Height: 100%
The sphere packing problem is the three-dimensional version of a class of ball-packing problems in arbitrary dimensions. In two dimensions, the equivalent problem is packing circles on a plane. In one dimension it is packing line segments into a linear universe. [10]
In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V.The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can ...