Search results
Results From The WOW.Com Content Network
A crack growth equation is used for calculating the size of a fatigue crack growing from cyclic loads. The growth of a fatigue crack can result in catastrophic failure, particularly in the case of aircraft. When many growing fatigue cracks interact with one another it is known as widespread fatigue damage. A crack growth equation can be used to ...
Also called Indianite. A mineral from the lime-rich end of the plagioclase group of minerals. Anorthites are usually silicates of calcium and aluminium occurring in some basic igneous rocks, typically those produced by the contact metamorphism of impure calcareous sediments. anticline An arched fold in which the layers usually dip away from the fold axis. Contrast syncline. aphanic Having the ...
Examples of diseases of affluence include mostly chronic non-communicable diseases (NCDs) and other physical health conditions for which personal lifestyles and societal conditions associated with economic development are believed to be an important risk factor—such as type 2 diabetes, asthma, coronary heart disease, cerebrovascular disease ...
An example of a safe-life component is the helicopter rotor blade. Due to the extremely large numbers of cycles endured by the rotating component, an undetectable crack may grow to a critical length in a single flight and before the aircraft lands, result in a catastrophic failure that regular maintenance could not have prevented.
Cartoon examples of common tensile fracture mechanisms in laboratory rock samples. A) Axial stretching: tension is applied far from the crack. B) Hydraulic fracturing: tension or compression is applied far away from the crack and fluid pressure increases, causing tension on the face of the cracks.
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe.
The head loss Δh (or h f) expresses the pressure loss due to friction in terms of the equivalent height of a column of the working fluid, so the pressure drop is =, where: Δh = The head loss due to pipe friction over the given length of pipe (SI units: m); [b]
Given that the head loss h f expresses the pressure loss Δp as the height of a column of fluid, Δ p = ρ ⋅ g ⋅ h f {\displaystyle \Delta p=\rho \cdot g\cdot h_{f}} where ρ is the density of the fluid.