Search results
Results From The WOW.Com Content Network
Apothem of a hexagon Graphs of side, s; apothem, a; and area, A of regular polygons of n sides and circumradius 1, with the base, b of a rectangle with the same area. The green line shows the case n = 6. The apothem (sometimes abbreviated as apo [1]) of a regular polygon is a line
Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property. Geometrically, the square root of 2 is the length of a diagonal across a square with sides of one unit of length; this follows from the Pythagorean theorem. It was probably the first number known to be irrational. [1]
Some regular polygons are easy to construct with compass and straightedge; other regular polygons are not constructible at all. The ancient Greek mathematicians knew how to construct a regular polygon with 3, 4, or 5 sides, [11]: p. xi and they knew how to construct a regular polygon with double the number of sides of a given regular polygon.
Irrationality, by infinite reciprocal subtraction, can be easily seen in the golden ratio of the regular pentagon. [26] Some scholars in the early 20th century credited Hippasus with the discovery of the irrationality of , the square root of 2.
The area of a regular polygon is half its perimeter times the apothem. As the number of sides of the regular polygon increases, the polygon tends to a circle, and the apothem tends to the radius. This suggests that the area of a disk is half the circumference of its bounding circle times the radius. [3]
The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.
Among irrational numbers are the ratio π of a circle's circumference to its diameter, Euler's number e, the golden ratio φ, and the square root of two. [1] In fact, all square roots of natural numbers, other than of perfect squares, are irrational. [2] Like all real numbers, irrational numbers can be expressed in positional notation, notably ...
A regular icositrigon has internal angles of degrees, with an area of = = , where is side length and is the inradius, or apothem. The regular icositrigon is not constructible with a compass and straightedge or angle trisection, [1] on account of the number 23 being neither a Fermat nor Pierpont prime.