Search results
Results From The WOW.Com Content Network
The Lagrangian and Eulerian specifications of the kinematics and dynamics of the flow field are related by the material derivative (also called the Lagrangian derivative, convective derivative, substantial derivative, or particle derivative). [1] Suppose we have a flow field u, and we are also given a generic field with Eulerian specification F ...
In field theory, the independent variable is replaced by an event in spacetime (x, y, z, t), or more generally still by a point s on a Riemannian manifold.The dependent variables are replaced by the value of a field at that point in spacetime (,,,) so that the equations of motion are obtained by means of an action principle, written as: =, where the action, , is a functional of the dependent ...
The reason for the stability is a second-order effect: as a body moves away from the exact Lagrange position, Coriolis acceleration (which depends on the velocity of an orbiting object and cannot be modeled as a contour map) [22] curves the trajectory into a path around (rather than away from) the point.
Figure 11: An elliptic Lagrangian Coherent Structure (or LCS, in green, on the left) and its advected position under the flow map (on the right) of a chaotically forced ABC flow. Also shown in green is a circle of initial conditions placed around the LCS (on the left), advected for the same amount of time (on the right).
Mission consists of two spacecraft, which were the first spacecraft to reach Earth–Moon Lagrangian points. Both moved through Earth–Moon Lagrangian points, and are now in lunar orbit. [34] [35] WIND: Sun–Earth L 2: NASA: Arrived at L 2 in November 2003 and departed April 2004. Gaia Space Observatory: Sun–Earth L 2: ESA: Launched 19 ...
Associated with the field is a Lagrangian density (,, ˙,,) defined in terms of the field and its space and time derivatives at a location r and time t. Analogous to the particle case, for non-relativistic applications the Lagrangian density is also the kinetic energy density of the field, minus its potential energy density (this is not true in ...
Lagrangian (field theory), a formalism in classical field theory; Lagrangian point, a position in an orbital configuration of two large bodies; Lagrangian coordinates, a way of describing the motions of particles of a solid or fluid in continuum mechanics; Lagrangian coherent structure, distinguished surfaces of trajectories in a dynamical system
In a path integral, the field Lagrangian, integrated over all possible field histories, defines the probability amplitude to go from one field configuration to another. In order to make sense, the field theory must have a well-defined ground state, and the integral must be performed a little bit rotated into imaginary time, i.e. a Wick rotation ...