When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electromagnetic spectrum - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_spectrum

    Low frequency: 10 km 30 kHz 124 peV: VLF Very low frequency: 100 km 3 kHz 12.4 peV ULF Ultra low frequency: 1 Mm: 300 Hz: 1.24 peV SLF Super low frequency: 10 Mm 30 Hz 124 feV: ELF Extremely low frequency: 100 Mm 3 Hz 12.4 feV Sources [11] [12] [13] Table shows the lower limits for the specified class

  3. Photon energy - Wikipedia

    en.wikipedia.org/wiki/Photon_energy

    The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy. Photon energy can be expressed using any energy unit.

  4. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    A photon's energy is equal to the Planck constant (h) times its frequency (f) and thus is proportional to its frequency, or inversely to its wavelength (λ). [4] ΔE = hf = hc / λ, since c, the speed of light, equals to fλ [4]

  5. Redshift - Wikipedia

    en.wikipedia.org/wiki/Redshift

    In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light).The opposite change, a decrease in wavelength and increase in frequency and energy, is known as a blueshift, or negative redshift.

  6. Emission spectrum - Wikipedia

    en.wikipedia.org/wiki/Emission_spectrum

    The frequency of light emitted is a function of the energy of the transition. Since energy must be conserved, the energy difference between the two states equals the energy carried off by the photon. The energy states of the transitions can lead to emissions over a very large range of frequencies.

  7. Lyman series - Wikipedia

    en.wikipedia.org/wiki/Lyman_series

    The version of the Rydberg formula that generated the Lyman series was: [2] = (= +) where n is a natural number greater than or equal to 2 (i.e., n = 2, 3, 4, .... Therefore, the lines seen in the image above are the wavelengths corresponding to n = 2 on the right, to n → ∞ on the left.

  8. Planck relation - Wikipedia

    en.wikipedia.org/wiki/Planck_relation

    The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.

  9. Frequency - Wikipedia

    en.wikipedia.org/wiki/Frequency

    Even higher-frequency waves are called X-rays, and higher still are gamma rays. All of these waves, from the lowest-frequency radio waves to the highest-frequency gamma rays, are fundamentally the same, and they are all called electromagnetic radiation. They all travel through vacuum at the same speed (the speed of light), giving them ...