When.com Web Search

  1. Ad

    related to: imaginary numbers in quadratic equations

Search results

  1. Results From The WOW.Com Content Network
  2. Quadratic integer - Wikipedia

    en.wikipedia.org/wiki/Quadratic_integer

    In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. Quadratic integers are algebraic integers of degree two, that is, solutions of equations of the form a x 2 + bx + c = 0. with b and c (usual) integers. When algebraic integers are considered, the usual integers are often called rational integers.

  3. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.

  4. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    A real number a can be regarded as a complex number a + 0i, whose imaginary part is 0. A purely imaginary number bi is a complex number 0 + bi, whose real part is zero. It is common to write a + 0i = a, 0 + bi = bi, and a + (−b)i = a − bi; for example, 3 + (−4)i = 3 − 4i.

  5. Quadratic field - Wikipedia

    en.wikipedia.org/wiki/Quadratic_field

    If >, the corresponding quadratic field is called a real quadratic field, and, if <, it is called an imaginary quadratic field or a complex quadratic field, corresponding to whether or not it is a subfield of the field of the real numbers. Quadratic fields have been studied in great depth, initially as part of the theory of binary quadratic ...

  6. Imaginary unit - Wikipedia

    en.wikipedia.org/wiki/Imaginary_unit

    The imaginary unit i in the complex plane: Real numbers are conventionally drawn on the horizontal axis, and imaginary numbers on the vertical axis. The imaginary unit or unit imaginary number (i) is a mathematical constant that is a solution to the quadratic equation x 2 + 1 = 0.

  7. Stark–Heegner theorem - Wikipedia

    en.wikipedia.org/wiki/Stark–Heegner_theorem

    In number theory, the Heegner theorem [1] establishes the complete list of the quadratic imaginary number fields whose rings of integers are principal ideal domains. It solves a special case of Gauss's class number problem of determining the number of imaginary quadratic fields that have a given fixed class number.

  8. Class number problem - Wikipedia

    en.wikipedia.org/wiki/Class_number_problem

    For given low class number (such as 1, 2, and 3), Gauss gives lists of imaginary quadratic fields with the given class number and believes them to be complete. Infinitely many real quadratic fields with class number one Gauss conjectures that there are infinitely many real quadratic fields with class number one.

  9. Quadratic irrational number - Wikipedia

    en.wikipedia.org/wiki/Quadratic_irrational_number

    Abu Kamil was the first mathematician to introduce irrational numbers as valid solutions to quadratic equations. [2] [3] Quadratic irrationals are used in field theory to construct field extensions of the field of rational numbers Q.