Search results
Results From The WOW.Com Content Network
Download as PDF; Printable version; In other projects ... Plane curves of degree 2 are known as conics or conic sections and include Circle. Unit circle; Ellipse ...
A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.
Download as PDF; Printable version; In other projects Wikimedia Commons; ... Pages in category "Conic sections" The following 51 pages are in this category, out of 51 ...
On conic sections, ruled surfaces and other manifestations of the hyperbola 1977 Oct: On playing New Eleusis, the game that simulates the search for truth 1977 Nov: In which joining sets of points by lines leads into diverse (and diverting) paths 1977 Dec: Dr. Matrix goes to California to apply punk to rock study 1978 Jan
In Euclidean geometry, a circumconic is a conic section that passes through the three vertices of a triangle, [1] and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle. [2] Suppose A, B, C are distinct non-collinear points, and let ABC denote the triangle whose vertices are A, B, C.
In geometry, the conic constant (or Schwarzschild constant, [1] after Karl Schwarzschild) is a quantity describing conic sections, and is represented by the letter K. The constant is given by K = − e 2 , {\displaystyle K=-e^{2},} where e is the eccentricity of the conic section.
More generally, when the directrix is an ellipse, or any conic section, and the apex is an arbitrary point not on the plane of , one obtains an elliptic cone [4] (also called a conical quadric or quadratic cone), [5] which is a special case of a quadric surface.
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems.Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.