Ad
related to: expected value calculator continuous
Search results
Results From The WOW.Com Content Network
Any definition of expected value may be extended to define an expected value of a multidimensional random variable, i.e. a random vector X. It is defined component by component, as E[X] i = E[X i]. Similarly, one may define the expected value of a random matrix X with components X ij by E[X] ij = E[X ij].
For a random variable following the continuous uniform distribution, the expected value is = +, and the variance is = (). For the special case a = − b , {\displaystyle a=-b,} the probability density function of the continuous uniform distribution is:
The expected value or mean of a random vector is a fixed vector [] whose elements are the expected values of the respective random variables. [ 3 ] : p.333 E [ X ] = ( E [ X 1 ] , . . .
This value can then be used to give some scaling relation between the inflexion point and maximum point of the log-normal distribution. [55] This relationship is determined by the base of natural logarithm, e = 2.718 … {\displaystyle e=2.718\ldots } , and exhibits some geometrical similarity to the minimal surface energy principle.
If p = 1/n and X is geometrically distributed with parameter p, then the distribution of X/n approaches an exponential distribution with expected value 1 as n → ∞, since (/ >) = (>) = = = [()] [] =. More generally, if p = λ/n, where λ is a parameter, then as n→ ∞ the distribution of X/n approaches an exponential distribution with rate ...
This proposition is (sometimes) known as the law of the unconscious statistician because of a purported tendency to think of the aforementioned law as the very definition of the expected value of a function g(X) and a random variable X, rather than (more formally) as a consequence of the true definition of expected value. [1]
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...
An arbitrary function φ : R n → C is the characteristic function of some random variable if and only if φ is positive definite, continuous at the origin, and if φ(0) = 1. Khinchine’s criterion. A complex-valued, absolutely continuous function φ, with φ(0) = 1, is a characteristic function if and only if it admits the representation