When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sum of normally distributed random variables - Wikipedia

    en.wikipedia.org/wiki/Sum_of_normally...

    This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]

  3. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    If , are two independent normal deviates with mean and variance , and , are arbitrary real numbers, then the variable = + (+) + + is also normally distributed with mean and variance . It follows that the normal distribution is stable (with exponent α = 2 {\textstyle \alpha =2} ).

  4. Central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Central_limit_theorem

    The distribution of the sum (or average) of the rolled numbers will be well approximated by a normal distribution. Since real-world quantities are often the balanced sum of many unobserved random events, the central limit theorem also provides a partial explanation for the prevalence of the normal probability distribution.

  5. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  6. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    To obtain the marginal distribution over a subset of multivariate normal random variables, one only needs to drop the irrelevant variables (the variables that one wants to marginalize out) from the mean vector and the covariance matrix. The proof for this follows from the definitions of multivariate normal distributions and linear algebra.

  7. Wald's equation - Wikipedia

    en.wikipedia.org/wiki/Wald's_equation

    In its simplest form, it relates the expectation of a sum of randomly many finite-mean, independent and identically distributed random variables to the expected number of terms in the sum and the random variables' common expectation under the condition that the number of terms in the sum is independent of the summands.

  8. Standard deviation - Wikipedia

    en.wikipedia.org/wiki/Standard_deviation

    The standard deviation of a probability distribution is the same as that of a random variable having that distribution. Not all random variables have a standard deviation. If the distribution has fat tails going out to infinity, the standard deviation might not exist, because the integral might not converge. The normal distribution has tails ...

  9. Irwin–Hall distribution - Wikipedia

    en.wikipedia.org/wiki/Irwin–Hall_distribution

    In probability and statistics, the Irwin–Hall distribution, named after Joseph Oscar Irwin and Philip Hall, is a probability distribution for a random variable defined as the sum of a number of independent random variables, each having a uniform distribution. [1] For this reason it is also known as the uniform sum distribution.