When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    Fig. 2: Column effective length factors for Euler's critical load. In practical design, it is recommended to increase the factors as shown above. The following assumptions are made while deriving Euler's formula: [3] The material of the column is homogeneous and isotropic. The compressive load on the column is axial only.

  3. Johnson's parabolic formula - Wikipedia

    en.wikipedia.org/wiki/Johnson's_parabolic_formula

    In structural engineering, Johnson's parabolic formula is an empirically based equation for calculating the critical buckling stress of a column. The formula is based on experimental results by J. B. Johnson from around 1900 as an alternative to Euler's critical load formula under low slenderness ratio (the ratio of radius of gyration to ...

  4. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.

  5. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    The Euler buckling formula defines the axial compression force which will cause a strut (or column) to fail in buckling. = where = maximum or critical force (vertical load on column), = modulus of elasticity,

  6. Self-buckling - Wikipedia

    en.wikipedia.org/wiki/Self-buckling

    Elastic buckling of a "heavy" column i.e., column buckling under its own weight, was first investigated by Greenhill in 1881. [1] He found that a free-standing, vertical column, with density ρ {\displaystyle \rho } , Young's modulus E {\displaystyle E} , and cross-sectional area A {\displaystyle A} , will buckle under its own weight if its ...

  7. Buckling - Wikipedia

    en.wikipedia.org/wiki/Buckling

    Since structural columns are commonly of intermediate length, the Euler formula has little practical application for ordinary design. Issues that cause deviation from the pure Euler column behaviour include imperfections in geometry of the column in combination with plasticity/non-linear stress strain behaviour of the column's material.

  8. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    For this reason, the Euler–Bernoulli beam equation is widely used in engineering, especially civil and mechanical, to determine the strength (as well as deflection) of beams under bending. Both the bending moment and the shear force cause stresses in the beam.

  9. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    Euler's identity is a direct result of Euler's formula, published in his monumental 1748 work of mathematical analysis, Introductio in analysin infinitorum, [16] but it is questionable whether the particular concept of linking five fundamental constants in a compact form can be attributed to Euler himself, as he may never have expressed it.