Search results
Results From The WOW.Com Content Network
All nuclear explosions produce fission products, un-fissioned nuclear material, and weapon residues vaporized by the heat of the fireball. These materials are limited to the original mass of the device, but include radioisotopes with long lives. [3] When the nuclear fireball does not reach the ground, this is the only fallout produced.
The range for significant levels of initial radiation does not increase markedly with weapon yield and, as a result, the initial radiation becomes less of a hazard with increasing yield. With larger weapons, above 50 kt (200 TJ), blast and thermal effects are so much greater in importance that prompt radiation effects can be ignored.
The banana equivalent dose is sometimes used in science communication to visualize different levels of ionizing radiation. The collective radiation background dose for natural sources in Europe is about 500,000 man-Sieverts per year. The total dose from Chernobyl is estimated at 80,000 man-sieverts, or roughly 1/6 as much. [1]
The first printed edition of the Karlsruhe Nuclide Chart of 1958 in the form of a wall chart was created by Walter Seelmann-Eggebert and his assistant Gerda Pfennig. Walter Seelmann-Eggebert was director of the Radiochemistry Institute in the 1956 founded "Kernreaktor Bau- und Betriebsgesellschaft mbH" in Karlsruhe, Germany (a predecessor institution of the later "(Kern-)Forschungszentrum ...
The Fukushima Daiichi nuclear accident was originally rated as INES 5, but then upgraded to INES 7 (the highest level) when the events of units 1, 2 and 3 were combined into a single event and the combined release of radiological material was the determining factor for the INES rating. [43]
A nuclear electromagnetic pulse (nuclear EMP or NEMP) is a burst of electromagnetic radiation created by a nuclear explosion. The resulting rapidly varying electric and magnetic fields may couple with electrical and electronic systems to produce damaging current and voltage surges .
The first three arrive almost simultaneously, since they travel at light-speed, though thermal radiation can last several seconds and inflict severe burns miles from a blast site.
Compared to a pure fission bomb with an identical explosive yield, a neutron bomb would emit about ten times [9] the amount of neutron radiation. In a fission bomb, at sea level, the total radiation pulse energy which is composed of both gamma rays and neutrons is approximately 5% of the entire energy released; in neutron bombs, it would be ...