Ads
related to: euclid's principles of geometry and science in termsstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.
Euclid's axiomatic approach and constructive methods were widely influential. Many of Euclid's propositions were constructive, demonstrating the existence of some figure by detailing the steps he used to construct the object using a compass and straightedge. His constructive approach appears even in his geometry's postulates, as the first and ...
Euclid (/ ˈ j uː k l ɪ d /; Ancient Greek: Εὐκλείδης; fl. 300 BC) was an ancient Greek mathematician active as a geometer and logician. [2] Considered the "father of geometry", [3] he is chiefly known for the Elements treatise, which established the foundations of geometry that largely dominated the field until the early 19th century.
The Elements began with definitions of terms, fundamental geometric principles (called axioms or postulates), and general quantitative principles (called common notions) from which all the rest of geometry could be logically deduced. Following are his five axioms, somewhat paraphrased to make the English easier to read.
Euclid introduced certain axioms, or postulates, expressing primary or self-evident properties of points, lines, and planes. [39] He proceeded to rigorously deduce other properties by mathematical reasoning. The characteristic feature of Euclid's approach to geometry was its rigor, and it has come to be known as axiomatic or synthetic geometry ...
Based on ancient Greek methods, an axiomatic system is a formal description of a way to establish the mathematical truth that flows from a fixed set of assumptions. Although applicable to any area of mathematics, geometry is the branch of elementary mathematics in which this method has most extensively been successfully applied.
Euclid gave the definition of parallel lines in Book I, Definition 23 [2] just before the five postulates. [3] Euclidean geometry is the study of geometry that satisfies all of Euclid's axioms, including the parallel postulate. The postulate was long considered to be obvious or inevitable, but proofs were elusive.
In an axiomatic formulation of Euclidean geometry, such as that of Hilbert (modern mathematicians added to Euclid's original axioms to fill perceived logical gaps), [1]: 108 a line is stated to have certain properties that relate it to other lines and points. For example, for any two distinct points, there is a unique line containing them, and ...