Search results
Results From The WOW.Com Content Network
Electron capture happens most often in the heavier neutron-deficient elements where the mass change is smallest and positron emission is not always possible. When the loss of mass in a nuclear reaction is greater than zero but less than 2m e c 2 the process cannot occur by positron emission, but occurs spontaneously for electron capture.
Electron capture also involves an inner shell electron, which in this case is retained in the nucleus (changing the atomic number) and leaving the atom (not nucleus) in an excited state. The atom missing an inner electron can relax by a cascade of X-ray emissions as higher energy electrons in the atom fall to fill the vacancy left in the ...
Nuclei which decay by positron emission may also decay by electron capture. For low-energy decays, electron capture is energetically favored by 2m e c 2 = 1.022 MeV, since the final state has an electron removed rather than a positron added. As the energy of the decay goes up, so does the branching fraction of positron emission.
decay (positron emission) of a nucleus is allowed energetically, so too is electron capture allowed. This is a process during which a nucleus captures one of its atomic electrons, resulting in the emission of a neutrino: A Z X + e − → A Z−1 X′ + ν e. An example of electron capture is one of the decay modes of krypton-81 into bromine-81 ...
In electron capture, some proton-rich nuclides were found to capture their own atomic electrons instead of emitting positrons, and subsequently, these nuclides emit only a neutrino and a gamma ray from the excited nucleus (and often also Auger electrons and characteristic X-rays, as a result of the re-ordering of electrons to fill the place of ...
The positron or antielectron is the particle with an electric charge of +1e, a spin of 1/2 (the same as the electron), and the same mass as an electron. It is the antiparticle ( antimatter counterpart) of the electron .
In physics, electron emission is the ejection of an electron from the surface of matter, [1] or, in beta decay (β− decay), where a beta particle (a fast energetic electron or positron) is emitted from an atomic nucleus transforming the original nuclide to an isobar.
In about 89.28% of events, it decays to calcium-40 (40 Ca) with emission of a beta particle (β −, an electron) with a maximum energy of 1.31 MeV and an antineutrino. In about 10.72% of events, it decays to argon-40 ( 40 Ar) by electron capture (EC), with the emission of a neutrino and then a 1.460 MeV photon .