When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Skew-symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Skew-symmetric_matrix

    If the characteristic of the field is 2, then a skew-symmetric matrix is the same thing as a symmetric matrix. The sum of two skew-symmetric matrices is skew-symmetric. A scalar multiple of a skew-symmetric matrix is skew-symmetric. The elements on the diagonal of a skew-symmetric matrix are zero, and therefore its trace equals zero.

  3. Skew-symmetric graph - Wikipedia

    en.wikipedia.org/wiki/Skew-symmetric_graph

    In graph theory, a branch of mathematics, a skew-symmetric graph is a directed graph that is isomorphic to its own transpose graph, the graph formed by reversing all of its edges, under an isomorphism that is an involution without any fixed points. Skew-symmetric graphs are identical to the double covering graphs of bidirected graphs.

  4. Charts on SO (3) - Wikipedia

    en.wikipedia.org/wiki/Charts_on_SO(3)

    If we use a skew-symmetric matrix, every 3 × 3 skew-symmetric matrix is determined by 3 parameters, and so at first glance, the parameter space is R 3. Exponentiating such a matrix results in an orthogonal 3 × 3 matrix of determinant 1 – in other words, a rotation matrix, but this is a many-to-one map.

  5. Cayley transform - Wikipedia

    en.wikipedia.org/wiki/Cayley_transform

    for some skew-symmetric matrix A; more generally any orthogonal matrix Q can be written as = (+) for some skew-symmetric matrix A and some diagonal matrix E with ±1 as entries. [4] A slightly different form is also seen, [5] [6] requiring different mappings in each direction,

  6. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    While a rotation matrix is an orthogonal matrix = representing an element of () (the special orthogonal group), the differential of a rotation is a skew-symmetric matrix = in the tangent space (the special orthogonal Lie algebra), which is not itself a rotation matrix.

  7. Symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Symmetric_matrix

    Every real symmetric matrix is thus, up to choice of an orthonormal basis, a diagonal matrix. If and are real symmetric matrices that commute, then they can be simultaneously diagonalized by an orthogonal matrix: [2] there exists a basis of such that every element of the basis is an eigenvector for both and . Every real symmetric matrix is ...

  8. Symplectic matrix - Wikipedia

    en.wikipedia.org/wiki/Symplectic_matrix

    Sometimes the notation is used instead of for the skew-symmetric matrix. This is a particularly unfortunate choice as it leads to confusion with the notion of a complex structure , which often has the same coordinate expression as Ω {\displaystyle \Omega } but represents a very different structure.

  9. Rotations in 4-dimensional Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Rotations_in_4-dimensional...

    Let A be a 4 × 4 skew-symmetric matrix. The skew-symmetric matrix A can be uniquely decomposed as = + into two skew-symmetric matrices A 1 and A 2 satisfying the properties A 1 A 2 = 0, A 1 3 = −A 1 and A 2 3 = −A 2, where ∓θ 1 i and ∓θ 2 i are the eigenvalues of A.