Search results
Results From The WOW.Com Content Network
Multi-Angle light scattering describes a technique for measuring the light scattered by a sample into a plurality of angles. It is used for determining both the absolute molar mass and the average size of molecules in solution , by detecting how they scatter light .
To normalize the detectors, a measurement of a pure solvent is made first. Then an isotropic scatterer is added to the solvent. Since isotropic scatterers scatter the same intensity at any angle, the detector efficiency and gain can be normalized with this procedure. It is convenient to normalize all the detectors to the 90° angle detector.
A ternary flammability diagram, showing which mixtures of methane, oxygen gas, and inert nitrogen gas will burn. A ternary plot, ternary graph, triangle plot, simplex plot, or Gibbs triangle is a barycentric plot on three variables which sum to a constant. [1]
This makes small-angle measurements in neutrons and X-rays a bit more tedious, as very small angles are needed, and the data in those angles is often "overpowered" by the = spot emerging in usual scattering experiments. The problem is mitigated by conducting longer experiments with more exposure time, which allows the required data to "intensify".
Maxwell's equations are the basis of theoretical and computational methods describing light scattering, but since exact solutions to Maxwell's equations are only known for selected particle geometries (such as spherical), light scattering by particles is a branch of computational electromagnetics dealing with electromagnetic radiation ...
Current usage of the term "Mie solution" indicates a series approximation to a solution of Maxwell's equations. There are several known objects that allow such a solution: spheres, concentric spheres, infinite cylinders, clusters of spheres and clusters of cylinders. There are also known series solutions for scattering by ellipsoidal particles.
As the SAS measurements are performed very close to the primary beam ("small angles"), the technique needs a highly collimated or focused X-ray or neutron beam. The biological small-angle X-ray scattering is often performed at synchrotron radiation sources, because biological molecules normally scatter weakly and the measured solutions are dilute.
Small-angle X-ray scattering (SAXS) is a small-angle scattering technique by which nanoscale density differences in a sample can be quantified. This means that it can determine nanoparticle size distributions, resolve the size and shape of (monodisperse) macromolecules, determine pore sizes and characteristic distances of partially ordered materials. [1]