Search results
Results From The WOW.Com Content Network
A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3.
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
The geometric distribution can be generated experimentally from i.i.d. standard uniform random variables by finding the first such random variable to be less than or equal to . However, the number of random variables needed is also geometrically distributed and the algorithm slows as p {\displaystyle p} decreases.
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
The equation has two linearly independent solutions. At each of the three singular points 0, 1, ∞, there are usually two special solutions of the form x s times a holomorphic function of x, where s is one of the two roots of the indicial equation and x is a local variable vanishing at a regular singular point. This gives 3 × 2 = 6 special ...
Many important problems involve functions of several variables. Solutions of boundary value problems for the Laplace equation satisfy the Dirichlet's principle. Plateau's problem requires finding a surface of minimal area that spans a given contour in space: a solution can often be found by dipping a frame in soapy water.
A negative-order reversal of this sequence powers formula corresponding to the operation of repeated integration is defined by the zeta series transformation and its generalizations defined as a derivative-based transformation of generating functions, or alternately termwise by and performing an integral transformation on the sequence ...
In contrast to this, in a logarithmic spiral these distances, as well as the distances of the intersection points measured from the origin, form a geometric progression. The Archimedean spiral has two arms, one for θ > 0 and one for θ < 0. The two arms are smoothly connected at the origin. Only one arm is shown on the accompanying graph.