Search results
Results From The WOW.Com Content Network
With a stretching exponent β between 0 and 1, the graph of log f versus t is characteristically stretched, hence the name of the function. The compressed exponential function (with β > 1) has less practical importance, with the notable exception of β = 2, which gives the normal distribution.
Analogously to the classical Fourier transform, the eigenvalues represent frequencies and eigenvectors form what is known as a graph Fourier basis. The Graph Fourier transform is important in spectral graph theory. It is widely applied in the recent study of graph structured learning algorithms, such as the widely employed convolutional networks.
Thus, a representation that compresses the storage size of a file from 10 MB to 2 MB yields a space saving of 1 - 2/10 = 0.8, often notated as a percentage, 80%. For signals of indefinite size, such as streaming audio and video, the compression ratio is defined in terms of uncompressed and compressed data rates instead of data sizes:
In computer science, a graph is an abstract data type that is meant to implement the undirected graph and directed graph concepts from the field of graph theory within mathematics. A graph data structure consists of a finite (and possibly mutable) set of vertices (also called nodes or points ), together with a set of unordered pairs of these ...
(Note that if k > 1, then this really is a "stretch"; if k < 1, it is technically a "compression", but we still call it a stretch. Also, if k = 1, then the transformation is an identity, i.e. it has no effect.) The matrix associated with a stretch by a factor k along the x-axis is given by: []
Compression ratios are around 50–60% of the original size, [49] which is similar to those for generic lossless data compression. Lossless codecs use curve fitting or linear prediction as a basis for estimating the signal.
Lossless compression is a class of data compression that allows the original data to be perfectly reconstructed from the compressed data with no loss of information. Lossless compression is possible because most real-world data exhibits statistical redundancy . [ 1 ]
In many compression algorithms, the ranking is equivalent to probability mass function estimation. Given the previous letters (or given a context), each symbol is assigned with a probability. For instance, in arithmetic coding the symbols are ranked by their probabilities to appear after previous symbols, and the whole sequence is compressed ...