When.com Web Search

  1. Ad

    related to: thomson scattering theory of heat cycle

Search results

  1. Results From The WOW.Com Content Network
  2. Thomson scattering - Wikipedia

    en.wikipedia.org/wiki/Thomson_scattering

    Thomson scattering is a model for the effect of electromagnetic fields on electrons when the field energy is much less than the rest mass of the electron .In the model the electric field of the incident wave accelerates the charged particle, causing it, in turn, to emit radiation at the same frequency as the incident wave, and thus the wave is scattered.

  3. Joule–Thomson effect - Wikipedia

    en.wikipedia.org/wiki/Joule–Thomson_effect

    In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.

  4. Thermoelectric effect - Wikipedia

    en.wikipedia.org/wiki/Thermoelectric_effect

    This Thomson effect was predicted and later observed in 1851 by Lord Kelvin (William Thomson). [9] It describes the heating or cooling of a current-carrying conductor with a temperature gradient. If a current density J {\displaystyle \mathbf {J} } is passed through a homogeneous conductor, the Thomson effect predicts a heat production rate per ...

  5. Klein–Nishina formula - Wikipedia

    en.wikipedia.org/wiki/Klein–Nishina_formula

    The formula describes both the Thomson scattering of low energy photons (e.g. visible light) and the Compton scattering of high energy photons (e.g. x-rays and gamma-rays), showing that the total cross section and expected deflection angle decrease with increasing photon energy.

  6. Heat transfer physics - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_physics

    From the kinetic theory of gases, [20] thermal conductivity of principal carrier i (p, e, f and ph) is =,, where n i is the carrier density and the heat capacity is per carrier, u i is the carrier speed and λ i is the mean free path (distance traveled by carrier before an scattering event). Thus, the larger the carrier density, heat capacity ...

  7. Scattering - Wikipedia

    en.wikipedia.org/wiki/Scattering

    In mathematical physics, scattering theory is a framework for studying and understanding the interaction or scattering of solutions to partial differential equations. In acoustics , the differential equation is the wave equation , and scattering studies how its solutions, the sound waves , scatter from solid objects or propagate through non ...

  8. Hampson–Linde cycle - Wikipedia

    en.wikipedia.org/wiki/Hampson–Linde_cycle

    The Hampson–Linde cycle differs from the Siemens cycle only in the expansion step. Whereas the Siemens cycle has the gas do external work to reduce its temperature, the Hampson–Linde cycle relies solely on the Joule–Thomson effect ; this has the advantage that the cold side of the cooling apparatus needs no moving parts.

  9. Rutherford scattering experiments - Wikipedia

    en.wikipedia.org/wiki/Rutherford_scattering...

    Rutherford computes the probability of single scattering from a compact charge and demonstrates that it is 3 times larger than Thomson's multiple scattering probability. Rutherford completes his analysis including the effects of density and foil thickness, then concludes that thin foils are governed by single scattering, not multiple scattering.