Search results
Results From The WOW.Com Content Network
The word colligative is derived from the Latin colligatus meaning bound together. [3] This indicates that all colligative properties have a common feature, namely that they are related only to the number of solute molecules relative to the number of solvent molecules and not to the nature of the solute. [4] Colligative properties include:
Friedrich Wilhelm Ostwald (German: [ˈvɪlhɛlm ˈɔstˌvalt] ⓘ; 2 September [O.S. 21 August] 1853 – 4 April 1932) was a German chemist and philosopher.Ostwald is credited with being one of the founders of the field of physical chemistry, with Jacobus Henricus van 't Hoff, Walther Nernst and Svante Arrhenius. [1]
The boiling point elevation is a colligative property, which means that boiling point elevation is dependent on the number of dissolved particles but not their identity. [1] It is an effect of the dilution of the solvent in the presence of a solute. It is a phenomenon that happens for all solutes in all solutions, even in ideal solutions, and ...
This establishes the concept of colligative properties (1878). Svante Arrhenius studies the conductivity of salt solutions and determines that salts dissociate into ions in water (1884). Svante Arrhenius determines the impact of temperature on reaction rates and formulates the concept of activation energy (1889).
Subsequently, in 1931, building on the work of Heitler and London and on theories found in Lewis' famous article, Pauling published his ground-breaking article "The Nature of the Chemical Bond" [21] (see: manuscript) in which he used quantum mechanics to calculate properties and structures of molecules, such as angles between bonds and rotation ...
From Wikipedia, the free encyclopedia. Redirect page
The term molality is formed in analogy to molarity which is the molar concentration of a solution. The earliest known use of the intensive property molality and of its adjectival unit, the now-deprecated molal, appears to have been published by G. N. Lewis and M. Randall in the 1923 publication of Thermodynamics and the Free Energies of Chemical Substances. [3]
The van 't Hoff factor i (named after Dutch chemist Jacobus Henricus van 't Hoff) is a measure of the effect of a solute on colligative properties such as osmotic pressure, relative lowering in vapor pressure, boiling-point elevation and freezing-point depression.