When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector, the state vector. If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form. [1] [2] The state-space method ...

  3. State-transition matrix - Wikipedia

    en.wikipedia.org/wiki/State-transition_matrix

    The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .

  4. State variable - Wikipedia

    en.wikipedia.org/wiki/State_variable

    The set of possible combinations of state variable values is called the state space of the system. The equations relating the current state of a system to its most recent input and past states are called the state equations, and the equations expressing the values of the output variables in terms of the state variables and inputs are called the ...

  5. Phase plane - Wikipedia

    en.wikipedia.org/wiki/Phase_plane

    A two-dimensional system of linear differential equations can be written in the form: [1] = + = + which can be organized into a matrix equation: [] = [] [] =.where A is the 2 × 2 coefficient matrix above, and v = (x, y) is a coordinate vector of two independent variables.

  6. State-transition table - Wikipedia

    en.wikipedia.org/wiki/State-transition_table

    In the state-transition table, all possible inputs to the finite-state machine are enumerated across the columns of the table, while all possible states are enumerated across the rows. If the machine is in the state S 1 (the first row) and receives an input of 1 (second column), the machine will stay in the state S 1.

  7. Full state feedback - Wikipedia

    en.wikipedia.org/wiki/Full_state_feedback

    The poles of the FSF system are given by the characteristic equation of the matrix , [()] =. Comparing the terms of this equation with those of the desired characteristic equation yields the values of the feedback matrix K {\displaystyle {\textbf {K}}} which force the closed-loop eigenvalues to the pole locations specified by the desired ...

  8. State observer - Wikipedia

    en.wikipedia.org/wiki/State_observer

    In particular, the output of the observer may be subtracted from the output of the plant and then multiplied by a matrix ; this is then added to the equations for the state of the observer to produce a so-called Luenberger observer, defined by the equations below. Note that the variables of a state observer are commonly denoted by a "hat ...

  9. Algebraic Riccati equation - Wikipedia

    en.wikipedia.org/wiki/Algebraic_Riccati_equation

    The optimal current values of the problem's control variables at any time can be found using the solution of the Riccati equation and the current observations on evolving state variables. With multiple state variables and multiple control variables, the Riccati equation will be a matrix equation. The algebraic Riccati equation determines the ...