Ad
related to: euclidean geometry postulates
Search results
Results From The WOW.Com Content Network
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.
Euclid gave the definition of parallel lines in Book I, Definition 23 [2] just before the five postulates. [3] Euclidean geometry is the study of geometry that satisfies all of Euclid's axioms, including the parallel postulate. The postulate was long considered to be obvious or inevitable, but proofs were elusive.
Many of Euclid's propositions were constructive, demonstrating the existence of some figure by detailing the steps he used to construct the object using a compass and straightedge. His constructive approach appears even in his geometry's postulates, as the first and third postulates stating the existence of a line and circle are constructive.
These postulates are all based on basic geometry that can be confirmed experimentally with a scale and protractor. Since the postulates build upon the real numbers, the approach is similar to a model-based introduction to Euclidean geometry. Birkhoff's axiomatic system was utilized in the secondary-school textbook by Birkhoff and Beatley. [2]
Removing five axioms mentioning "plane" in an essential way, namely I.4–8, and modifying III.4 and IV.1 to omit mention of planes, yields an axiomatization of Euclidean plane geometry. Hilbert's axioms, unlike Tarski's axioms , do not constitute a first-order theory because the axioms V.1–2 cannot be expressed in first-order logic .
Absolute geometry is a geometry based on an axiom system consisting of all the axioms giving Euclidean geometry except for the parallel postulate or any of its alternatives. [69] The term was introduced by János Bolyai in 1832. [ 70 ]
The axiomatic foundation of Euclidean geometry can be dated back to the books known as Euclid's Elements (circa 300 B.C.). These five initial axioms (called postulates by the ancient Greeks) are not sufficient to establish Euclidean geometry. Many mathematicians have produced complete sets of axioms which do establish Euclidean geometry.
Probably the oldest, and most famous, list of axioms are the 4 + 1 Euclid's postulates of plane geometry. The axioms are referred to as "4 + 1" because for nearly two millennia the fifth (parallel) postulate ("through a point outside a line there is exactly one parallel") was suspected of being derivable from the first four. Ultimately, the ...